# Vishay Sfernice



# Resistor Networks Metal Film Technology



## **DIMENSIONS** in millimeters (inches)



#### **FEATURES**

- RCMA 02 (document no. 52009) metal film
- RCMX 02 (document no. 52008) metal film
- Temperature Range 55 °C/+ 125 °C
- Tolerance and/or Temperature Coefficient Tolerance tracking 0.1 % between two resistors TCR tracking 2 ppm/°C between two resistors

Please consult Vishay Sfernice for special requirements.

| SERIES<br>AND STYLES | MR3  | MR4  | MR5        | MR7  | MR11 |
|----------------------|------|------|------------|------|------|
| S = 2.54<br>(0.100)  | 8.6  | 11.5 | 13.6       | 19.7 | 28.8 |
| A = 5.08*<br>(0.200) | 13.6 | 19.7 | on request |      |      |

<sup>\*</sup> on request

| <b>ELECTRICAL SPECIFICATIONS</b> (per resistor) |                               |  |  |  |  |
|-------------------------------------------------|-------------------------------|--|--|--|--|
| Power Rating at 70 °C                           | 0.1 W                         |  |  |  |  |
| Resistance Tolerances                           | ± 0.1 % to ± 5 %              |  |  |  |  |
| Ohmic Value Range                               | 0.1 $\Omega$ to 10 M $\Omega$ |  |  |  |  |
| Temperature Coefficient Available               | ± 5 to ± 50 ppm/°C            |  |  |  |  |
| Maximum Power Rating<br>Per Packaging           | Number of resistors x 0.1 W   |  |  |  |  |

#### **AVAILABLE CONFIGURATIONS**

**RESISTOR NETWORKS** 

**S SERIES** 







## Resistor Networks Metal Film Technology

Vishay Sfernice

#### **PACKAGED CONFIGURATIONS**

Standard models - Consult Vishay Sfernice for special configuration requirements

#### **2 RESISTOR NETWORKS**



#### **4 RESISTOR NETWORKS**



**MR54S** 





#### **5 RESISTOR NETWORKS**



MR55P

#### **6 RESISTOR NETWORKS**





#### **7 RESISTOR NETWORKS**



MR77P

### **10 RESISTOR NETWORKS**





#### 11 RESISTOR NETWORKS



#### MR1111P

# MR

# Vishay Sfernice

## **Resistor Networks** Metal Film Technology



| DERING                                                                 | INFORM#                           | TION                                                                       |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tenuators                                                              |                                   |                                                                            |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                                                                                                                                                                                                                                                                                             |
| 3                                                                      | 3                                 | Т                                                                          | S                                                                                                                                 | 20B                                                                                                                                                                                                                                                                                                                | 50U                         | 1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | К3                         | e2                                                                                                                                                                                                                                                                                                                          |
| NUMBER<br>OF LEADS                                                     | NUMBER OF<br>RESISTORS            | CONFIGURATION                                                              | N LEAD A                                                                                                                          | ATTENUATION<br>RANGE                                                                                                                                                                                                                                                                                               | IMPEDANCE                   | TOLERANCE<br>PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEMPERATURE<br>COEFFICIENT | LEAD<br>(Pb)-FREE                                                                                                                                                                                                                                                                                                           |
| S standard: 2.54 (0.100) A on request: 5.08 (0.200)  RESISTIVE ELEMENT |                                   |                                                                            |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                                                                                                                                                                                                                                                                                             |
| sistor netwo                                                           | orks                              |                                                                            |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                                                                                                                                                                                                                                                                                             |
| MRC                                                                    | 9                                 | 8                                                                          | Р                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                  | <b>;</b>                    | 50U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | XXX                        | e2                                                                                                                                                                                                                                                                                                                          |
| ODEL                                                                   | NUMBER OF<br>LEADS                | NUMBER OF<br>RESISTORS                                                     | CONFIGURAT                                                                                                                        | -                                                                                                                                                                                                                                                                                                                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | LEAD<br>(Pb)-FREE                                                                                                                                                                                                                                                                                                           |
|                                                                        |                                   | P = Parallel<br>S = Serie                                                  |                                                                                                                                   | 2.54 (0<br>A on re                                                                                                                                                                                                                                                                                                 | 0.100) ohm<br>equest: the s | when the Market |                            |                                                                                                                                                                                                                                                                                                                             |
|                                                                        | NUMBER<br>OFLEADS<br>sistor netwo | NUMBER NUMBER OF OF LEADS RESISTORS  sistor networks MRC 9  ODEL NUMBER OF | NUMBER NUMBER OF CONFIGURATION OF LEADS RESISTORS  S star A on resistor networks  MRC 9 8  ODEL NUMBER OF RESISTORS  P = Parallel | NUMBER NUMBER OF CONFIGURATION LEAD A SPACING Set Standard: 2.54 (0.1 A on request: 5.08 (0.3 sistor networks)  MRC 9 8 P  NUMBER OF NUMBER OF CONFIGURATION LEAD A SPACING Set Standard: 2.54 (0.1 A on request: 5.08 (0.3 Sistor networks)  MRC 9 8 P  NUMBER OF NUMBER OF CONFIGURATION RESISTORS  P = Parallel | NUMBER                      | NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NUMBER                     | NUMBER OF CONFIGURATION LEAD ATTENUATION IMPEDANCE TOLERANCE TEMPERATURE COFFICIENT  S standard: 2.54 (0.100) A on request: 5.08 (0.200)  Sistor networks  MRC 9 8 P S 50U XXX   ODEL NUMBER OF LEADS RESISTORS  PER COFFICIENT  S standard: 2.54 (0.100) A on request: 5.08 (0.200)  S S S S S S S S S S S S S S S S S S S |

| SAP PART NUMBERING GUIDELINES |      |               |               |                |             |             |                            |  |
|-------------------------------|------|---------------|---------------|----------------|-------------|-------------|----------------------------|--|
| Attenuat                      | tors |               |               |                |             |             |                            |  |
| М                             | 33   | Т             | S             | 500            | 2R0         | F           | н                          |  |
| MODEL  • Resistor             | SIZE | CONFIGURATION | LEAD SPACING  | IMPEDANCE      | ATTENECTORS | TOLERANCE   | TEMPERATURE<br>COEFFICIENT |  |
| MF                            |      | 98            | P             | s              | 500         |             | xxx                        |  |
| MOE                           | DEL  | SIZE          | CONFIGURATION | LEAD SPACING O |             | IIC VALUE S | SPECIAL REQUEST            |  |

Document Number: 52018 Revision: 19-Mar-07

## **Legal Disclaimer Notice**



Vishay

## **Notice**

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05