TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

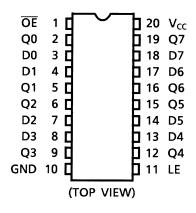
TC74HC373AP,TC74HC373AF,TC74HC373AFW

Octal D-Type Latch with 3-State Output

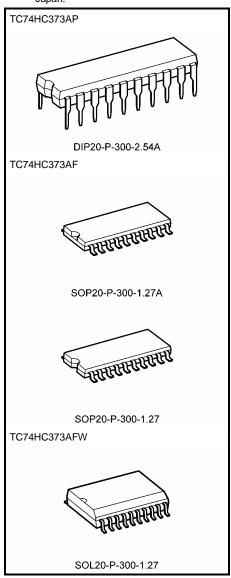
The TC74HC373A is a high speed CMOS OCTAL LATCH with 3-STATE OUTPUT fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

These 8-bit D-type latches are controlled by a latch enable input (LE) and a output enable input (\overline{OE}).


When the $\overline{\,{
m OE}\,}$ input is high, the eight outputs are in a high impedance state.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


Features

- High speed: $t_{pd} = 11 \text{ ns (typ.)}$ at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $ICC = 4 \mu A \text{ (max)}$ at $Ta = 25^{\circ}C$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Output drive capability: 15 LSTTL loads
- Symmetrical output impedance: |IOH| = IOL = 6 mA (min)
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2 to 6 V
- Pin and function compatible with 74LS373

Pin Assignment

Note: xxxFW (JEDEC SOP) is not available in Japan.

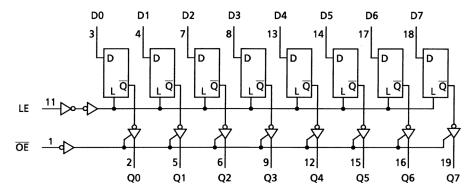
Weight

DIP20-P-300-2.54A : 1.30 g (typ.) SOP20-P-300-1.27A : 0.22 g (typ.) SOP20-P-300-1.27 : 0.22 g (typ.) SOL20-P-300-1.27 : 0.46 g (typ.)

IEC Logic Symbol

OE (1) LE (11)	EN C1		
DO (3) D1 (4) D2 (7) D3 (8) D4 (13) D5 (14) D6 (17) D7 (18)	1D	D V	(2) Q0 (5) Q1 (6) Q2 (9) Q3 (12) Q4 (15) Q5 (16) Q6 (19) Q7
			 •

Truth Table


	Output		
ŌE	LE	D	Q
Н	Χ	Х	Z
L	L	Х	Q _n
L	Н	L	L
L	Н	Н	Н

X: Don't care

Z: High impedance

Q_n: Q outputs are latched at the time when the LE input is taken to a low logic level.

System Diagram

2

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5 to 7	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	−0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	I _{OK}	±20	mA
DC output current	lout	±35	mA
DC V _{CC} /ground current	Icc	±75	mA
Power dissipation	P _D	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C shall be applied until 300 mW.

Recommended Operating Conditions (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	Vcc	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	V
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 ($V_{CC} = 6.0 \text{ V}$)	

Note: The recommended operating conditions are required to ensure the normal operation of the device.

Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition			Ta = 25°C			Ta –40 to	Unit	
	,			V _{CC} (V)	Min	Тур.	Max	Min	Max	
				2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}		_		3.15	_		3.15	_	V
, and the second				6.0	4.20	_	_	4.20	_	
				2.0		_	0.50	_	0.50	
Low-level input voltage	V_{IL}		_	4.5	_	_	1.35	_	1.35	V
, and the second				6.0		_	1.80	_	1.80	
				2.0	1.9	2.0	_	1.9	_	
	Voн		$I_{OH} = -20 \mu A$	4.5	4.4	4.5	_	4.4	_	
High-level output voltage		= V _{IH} or V _{IL}		6.0	5.9	6.0		5.9	_	V
			$I_{OH} = -6 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -7.8 \text{ mA}$	6.0	5.68	5.80		5.63	_	
		VIN = VIH or VIL		2.0		0.0	0.1	_	0.1	
			$I_{OL}=20~\mu A$	4.5	_	0.0	0.1		0.1	
Low-level output voltage	V_{OL}			6.0		0.0	0.1	—	0.1	V
			$I_{OL} = 6 \text{ mA}$	4.5	_	0.17	0.26		0.33	
			$I_{OL} = 7.8 \text{ mA}$	6.0	_	0.18	0.26	_	0.33	
3-state output off-state current	I _{OZ}	V _{IN} = V _{IH} or V _{IL} V _{OUT} = V _{CC} or GND		6.0	_	_	±0.5	_	±5.0	μА
Input leakage current	I _{IN}	$V_{IN} = V_{CC}$ or GND		6.0	_	_	±0.1	_	±1.0	μА
Quiescent supply current	Icc	V _{IN} = V _{CC} or	r GND	6.0	_	_	4.0	_	40.0	μА

Timing Requirements (input: $t_r = t_f = 6$ ns)

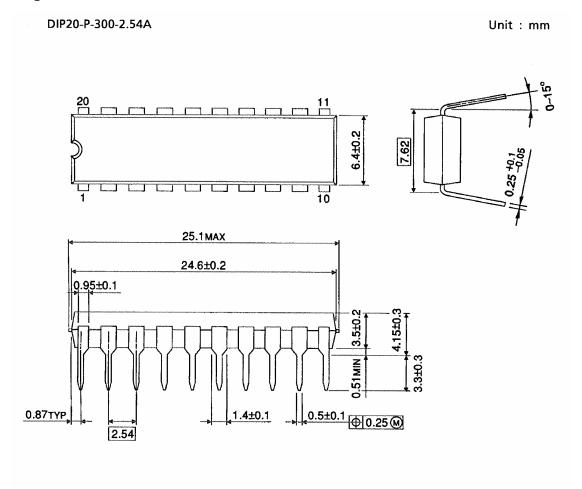
Characteristics	Symbol	Test Condition	Test Condition			Ta = -40 to 85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width			2.0	_	75	95	
(LE)	t _{W (H)}	_	4.5	_	15	19	ns
			6.0	_	13	16	
Minimum set-up time			2.0	_	50	65	
·	ts	_	4.5	_	10	13	ns
(Dn)			6.0		9	11	
Minimum hold time			2.0	_	5	5	
(Dn)	t _h	_	4.5	_	5	5	ns
(1011)			6.0	_	5	5	

4

AC Characteristics (input: $t_r = t_f = 6$ ns)

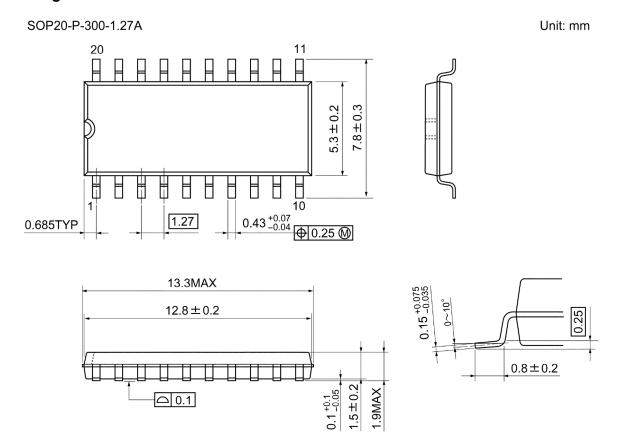
Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40 to 85°C		Unit
,			CL (pF)	V _{CC} (V)	Min	Тур.	Max	Min	Max	•
	+			2.0	_	20	60	_	75	
Output transition time	t _{TLH}	_	50	4.5	_	6	12	_	15	ns
	^t THL			6.0	_	5	10	_	0.85°C Un Max 75 15 ns 13 155 31 26 220 44 37 155 31 26 220 44 37 155 31 26 ns 220 44 37 155 31 26 ns 26 10 pF	
				2.0	_	42	125	_	155	
			50	4.5	_	14	25	_	31	
Propagation delay time	t _{pLH}			6.0		12	21		26	ne
(LE-Q)	t _{pHL}	_		2.0		57	175		220	115
,			150	4.5	_	19	35	_	44	
				6.0	_	16	30	_	37	
				2.0	_	42	125	_	155	- ns
		_	50	4.5	_	14	25	_	31	
Propagation delay time	t _{pLH}			6.0	_	12	21	_	26	
(D-Q)	tpHL			2.0	_	57	175	_	220	
,			150	150 4.5 — 19	19	35	_	44		
				6.0	_	16	30	_	37	
				2.0	_	39	125	_	155	
			50	4.5	_	13	25	_	31	
Outrout anable time	t_{pZL}	D. Alico		6.0	_	11	21	_	26	
Output enable time	t _{pZH}	$R_L = 1 \text{ k}\Omega$		2.0	_	54	175	_	220	ns
			150	4.5	_	18	35	_	44	
				6.0	_	15	30	_	37	
				2.0	_	30	125	_	155	
Output disable time	t _{pLZ}	$R_L = 1 k\Omega$	50	4.5	_	14	25	_	31	ns
	t _{pHZ}	_		6.0	_	13	21	_	26	
Input capacitance	C _{IN}	_		_	5	10	_	10	pF	
Output capacitance	C _{OUT}	_	_		_	10	_	_	_	pF
Power dissipation capacitance	C _{PD} (Note)	_	_		_	38	_	_	_	pF

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8$ (per latch)

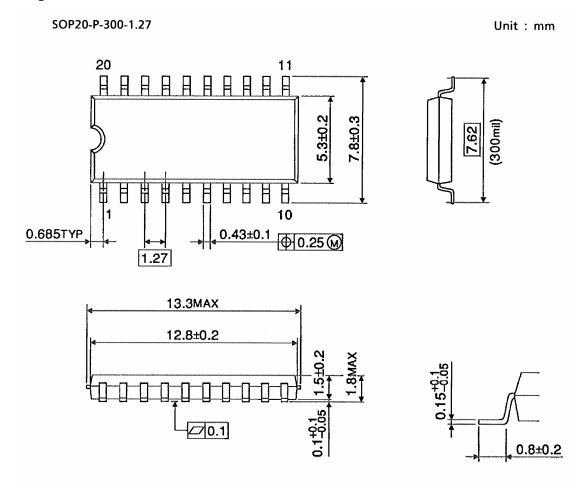
And the total $C_{\mbox{\scriptsize PD}}$ when n pcs. of latch operate can be gained by the following equation:



Package Dimensions

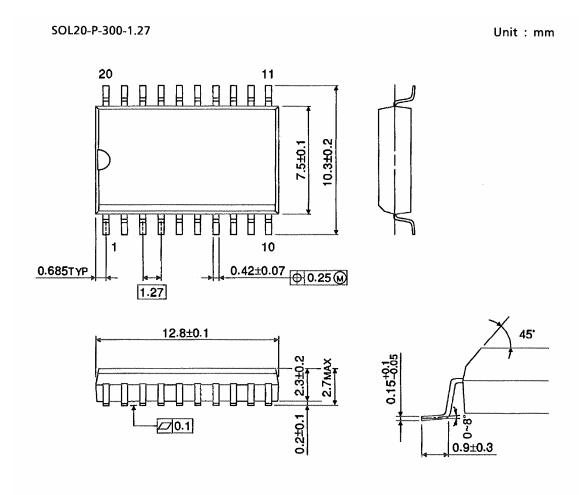
Weight: 1.30 g (typ.)

Package Dimensions



7

Weight: 0.22 g (typ.)


Package Dimensions

Weight: 0.22 g (typ.)

Package Dimensions (Note)

9

Note: This package is not available in Japan.

Weight: 0.46 g (typ.)

Note: Lead (Pb)-Free Packages

DIP20-P-300-2.54A SOP20-P-300-1.27A

RESTRICTIONS ON PRODUCT USE

060116EBA

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. 021023_c

10

• The products described in this document are subject to the foreign exchange and foreign trade laws. 021023_E