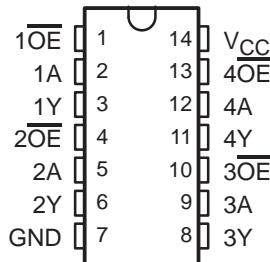
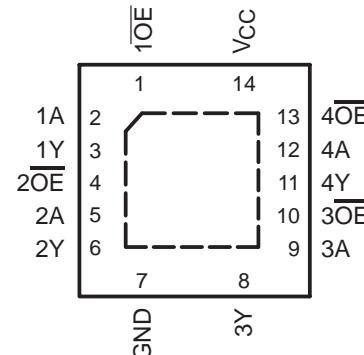


- Operates From 1.65 V to 3.6 V
- Specified From -40°C to 85°C and -40°C to 125°C
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.8 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at $V_{CC} = 3.3$ V, $T_A = 25^{\circ}\text{C}$
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information


This quadruple bus buffer gate is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC125A features independent line drivers with 3-state outputs. Each output is disabled when the associated output-enable (\overline{OE}) input is high.


To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

D, DB, NS, OR PW PACKAGE
(TOP VIEW)

RGY PACKAGE
(TOP VIEW)

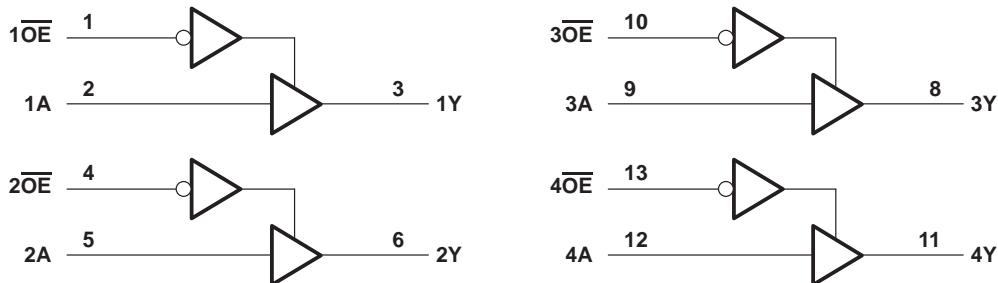
ORDERING INFORMATION

T_A	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	QFN – RGY	Reel of 1000	SN74LVC125ARGYR	LC125A
-40°C to 125°C	SOIC – D	Tube of 50	SN74LVC125AD	LVC125A
		Reel of 2500	SN74LVC125ADR	
		Reel of 250	SN74LVC125ADT	
	SOP – NS	Reel of 2000	SN74LVC125ANSR	LVC125A
	SSOP – DB	Reel of 2000	SN74LVC125ADBR	LC125A
	TSSOP – PW	Tube of 90	SN74LVC125APW	LC125A
		Reel of 2000	SN74LVC125APWR	
		Reel of 250	SN74LVC125APWT	

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74LVC125A


QUADRUPLE BUS BUFFER GATE WITH 3-STATE OUTPUTS

SCAS290N – JANUARY 1993 – REVISED FEBRUARY 2004

FUNCTION TABLE (each buffer)

INPUTS		OUTPUT
OE	A	Y
L	H	H
L	L	L
H	X	Z

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
 2. The value of V_{CC} is provided in the recommended operating conditions table.
 3. The package thermal impedance is calculated in accordance with JESD 51-7.
 4. The package thermal impedance is calculated in accordance with JESD 51-5.
 5. For the D package: above 70°C, the value of P_{tot} derates linearly with 8 mW/K.
 6. For the DB, NS, and PW packages: above 60°C, the value of P_{tot} derates linearly with 5.5 mW/K.

recommended operating conditions (see Note 7)

		$T_A = 25^\circ\text{C}$		$-40 \text{ TO } 85^\circ\text{C}$		$-40 \text{ TO } 125^\circ\text{C}$		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX		
V_{CC}	Supply voltage	Operating	1.65	3.6	1.65	3.6	1.65	3.6	V
		Data retention only	1.5		1.5		1.5		
V_{IH}	High-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.65 \times V_{CC}$	$0.65 \times V_{CC}$	$0.65 \times V_{CC}$			V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	1.7	1.7	1.7			
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2	2	2	2			
V_{IL}	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	$0.35 \times V_{CC}$	$0.35 \times V_{CC}$	$0.35 \times V_{CC}$			V	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	0.7	0.7	0.7	0.7			
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0.8	0.8	0.8	0.8			
V_I	Input voltage	0	5.5	0	5.5	0	5.5	V	
V_O	Output voltage	0	V_{CC}	0	V_{CC}	0	V_{CC}	V	
I_{OH}	High-level output current	$V_{CC} = 1.65 \text{ V}$	-4	-4	-4			mA	
		$V_{CC} = 2.3 \text{ V}$	-8	-8	-8				
		$V_{CC} = 2.7 \text{ V}$	-12	-12	-12				
		$V_{CC} = 3 \text{ V}$	-24	-24	-24				
I_{OL}	Low-level output current	$V_{CC} = 1.65 \text{ V}$	4	4	4			mA	
		$V_{CC} = 2.3 \text{ V}$	8	8	8				
		$V_{CC} = 2.7 \text{ V}$	12	12	12				
		$V_{CC} = 3 \text{ V}$	24	24	24				
$\Delta t/\Delta v$	Input transition rise or fall rate		8		8		8	ns/V	

NOTE 7: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SN74LVC125A
QUADRUPLE BUS BUFFER GATE
WITH 3-STATE OUTPUTS

SCAS290N – JANUARY 1993 – REVISED FEBRUARY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

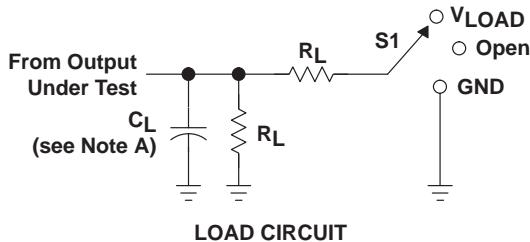
PARAMETER	TEST CONDITIONS	V _{CC}	T _A = 25°C			-40 TO 85°C		-40 TO 125°C		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX		
V _{OH}	I _{OH} = -100 µA	1.65 V to 3.6 V	V _{CC} -0.2			V _{CC} -0.2		V _{CC} -0.3		V	
	I _{OH} = -4 mA	1.65 V	1.29			1.2		1.05			
	I _{OH} = -8 mA	2.3 V	1.9			1.7		1.55			
	I _{OH} = -12 mA	2.7 V	2.2			2.2		2.05			
		3 V	2.4			2.4		2.25			
	I _{OH} = -24 mA	3 V	2.3			2.2		2			
V _{OL}	I _{OL} = 100 µA	1.65 V to 3.6 V	0.1			0.2		0.3		V	
	I _{OL} = 4 mA	1.65 V	0.24			0.45		0.6			
	I _{OL} = 8 mA	2.3 V	0.3			0.7		0.75			
	I _{OL} = 12 mA	2.7 V	0.4			0.4		0.6			
	I _{OL} = 24 mA	3 V	0.55			0.55		0.8			
I _I	V _I = 5.5 V or GND	3.6 V	±1			±5		±20		µA	
I _{OZ}	V _O = V _{CC} or GND	3.6 V	±1			±10		±20		µA	
I _{CC}	V _I = V _{CC} or GND, I _O = 0	3.6 V	1			10		40		µA	
ΔI _{CC}	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	2.7 V to 3.6 V	500			500		5000		µA	
C _i	V _I = V _{CC} or GND	3.3 V	5							pF	

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC}	T _A = 25°C			-40 TO 85°C		-40 TO 125°C		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
t _{pd}	A	Y	1.8 V ± 0.15 V	1	4.5	11.8	1	12.3	1	13.8	ns
			2.5 V ± 0.2 V	1	2.7	5.8	1	6.3	1	8.4	
			2.7 V	1	3	5.3	1	5.5	1	7	
			3.3 V ± 0.3 V	1	2.5	4.6	1	4.8	1	6	
t _{en}	OE	Y	1.8 V ± 0.15 V	1	4.3	13.8	1	14.3	1	15.8	ns
			2.5 V ± 0.2 V	1	2.7	6.9	1	7.4	1	9.5	
			2.7 V	1	3.3	6.4	1	6.6	1	8.5	
			3.3 V ± 0.3 V	1	2.4	5.2	1	5.4	1	7	
t _{dis}	OE	Y	1.8 V ± 0.15 V	1	4.3	10.6	1	11.1	1	12.6	ns
			2.5 V ± 0.2 V	1	2.2	5.1	1	5.6	1	7.7	
			2.7 V	1	2.5	4.8	1	5	1	6.5	
			3.3 V ± 0.3 V	1	2.4	4.4	1	4.6	1	6	
t _{sk(o)}			3.3 V ± 0.3 V					1		1.5	ns

SN74LVC125A
QUADRUPLE BUS BUFFER GATE
WITH 3-STATE OUTPUTS

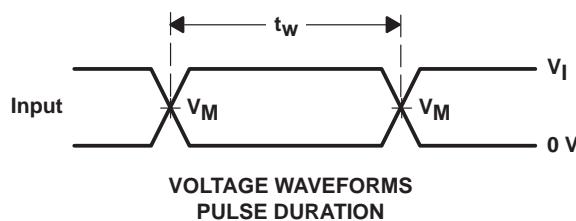
SCAS290N – JANUARY 1993 – REVISED FEBRUARY 2004

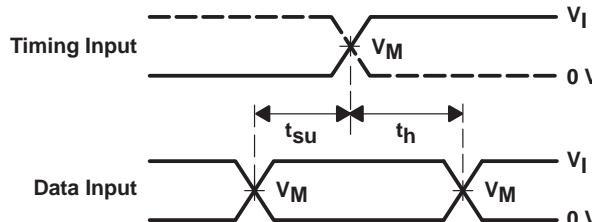

operating characteristics, $T_A = 25^\circ\text{C}$

PARAMETER	TEST CONDITIONS	V _{CC}	TYP	UNIT
C_{pd} Power dissipation capacitance per gate	$f = 10 \text{ MHz}$	1.8 V	7.4	pF
		2.5 V	11.3	
		3.3 V	15	

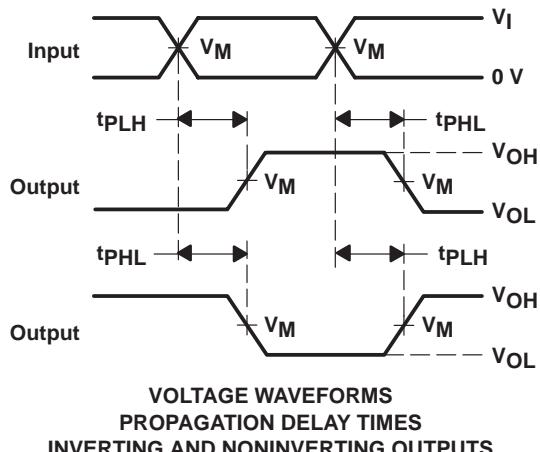
SN74LVC125A
QUADRUPLE BUS BUFFER GATE
WITH 3-STATE OUTPUTS

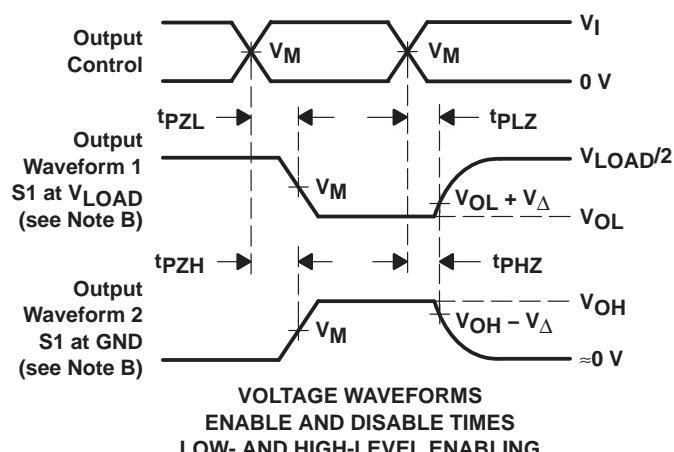
SCAS290N – JANUARY 1993 – REVISED FEBRUARY 2004


PARAMETER MEASUREMENT INFORMATION


TEST	S1
t_{PLH}/t_{PHL}	Open
t_{PLZ}/t_{PZL}	V_{LOAD}
t_{PHZ}/t_{PZH}	GND

LOAD CIRCUIT

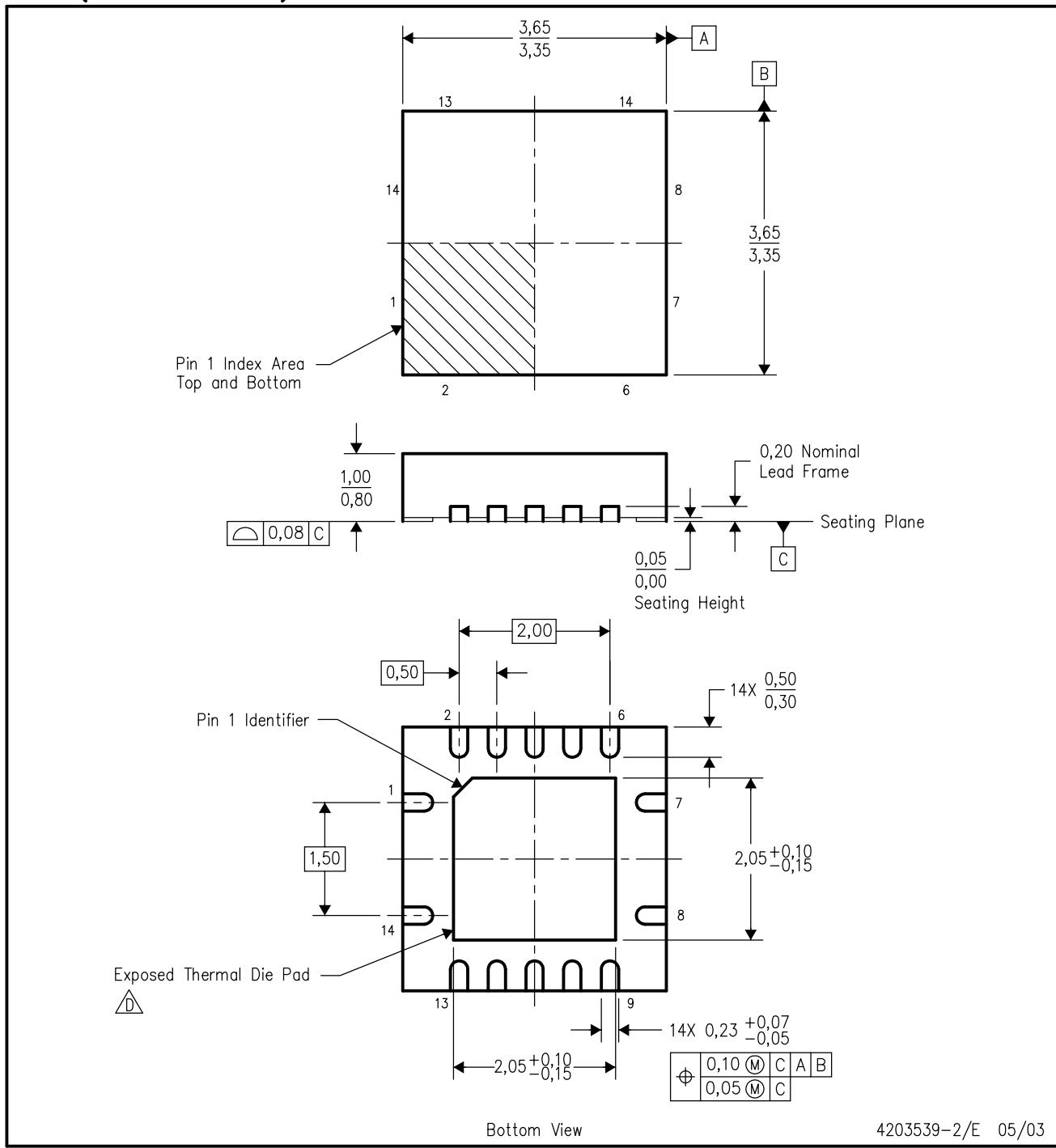

V_{CC}	INPUTS		V_M	V_{LOAD}	C_L	R_L	V_Δ
	V_I	t_r/t_f					
$1.8 \text{ V} \pm 0.15 \text{ V}$	V_{CC}	$\leq 2 \text{ ns}$	$V_{CC}/2$	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
$2.5 \text{ V} \pm 0.2 \text{ V}$	V_{CC}	$\leq 2 \text{ ns}$	$V_{CC}/2$	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	$\leq 2.5 \text{ ns}$	1.5 V	6 V	50 pF	500 Ω	0.3 V
$3.3 \text{ V} \pm 0.3 \text{ V}$	2.7 V	$\leq 2.5 \text{ ns}$	1.5 V	6 V	50 pF	500 Ω	0.3 V


VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR $\leq 10 \text{ MHz}$, $Z_O = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

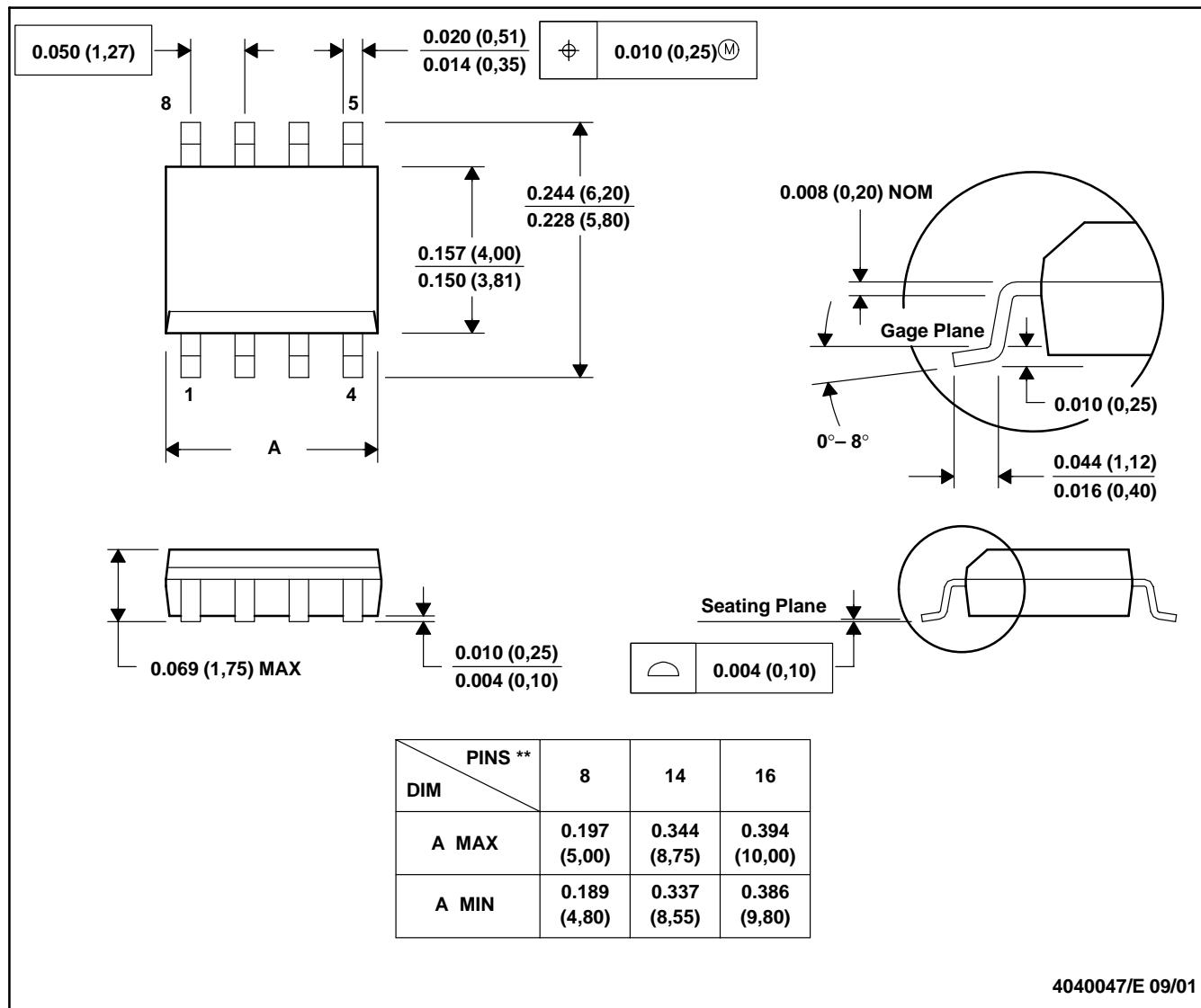
RGY (S-PQFP-N14)

PLASTIC QUAD FLATPACK

4203539-2/E 05/03

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- QFN (Quad Flatpack No-Lead) package configuration.


The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads.

- Package complies to JEDEC MO-241 variation BA.

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

4040047/E 09/01

NOTES:

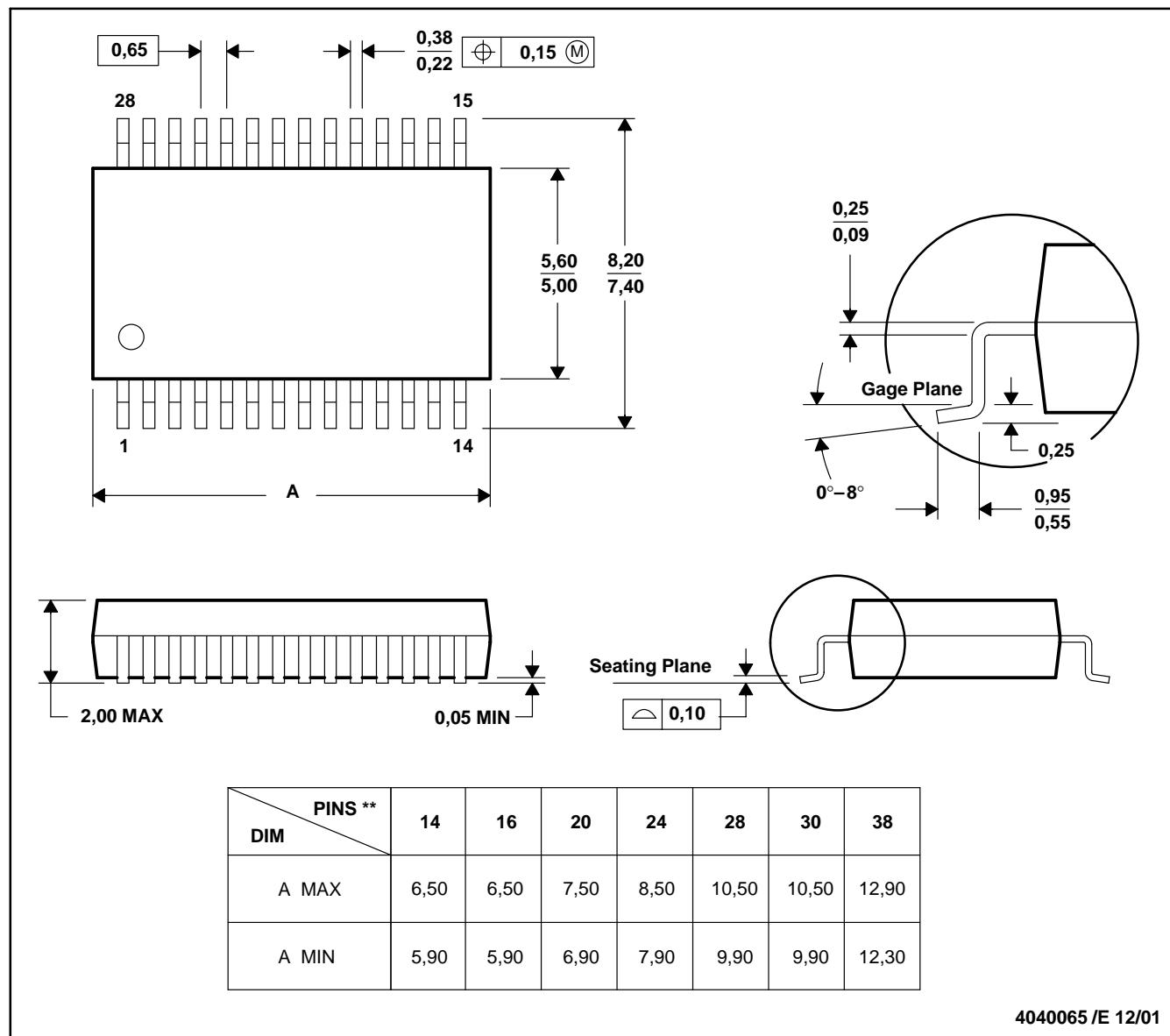
- All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0.15).
- Falls within JEDEC MS-012

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

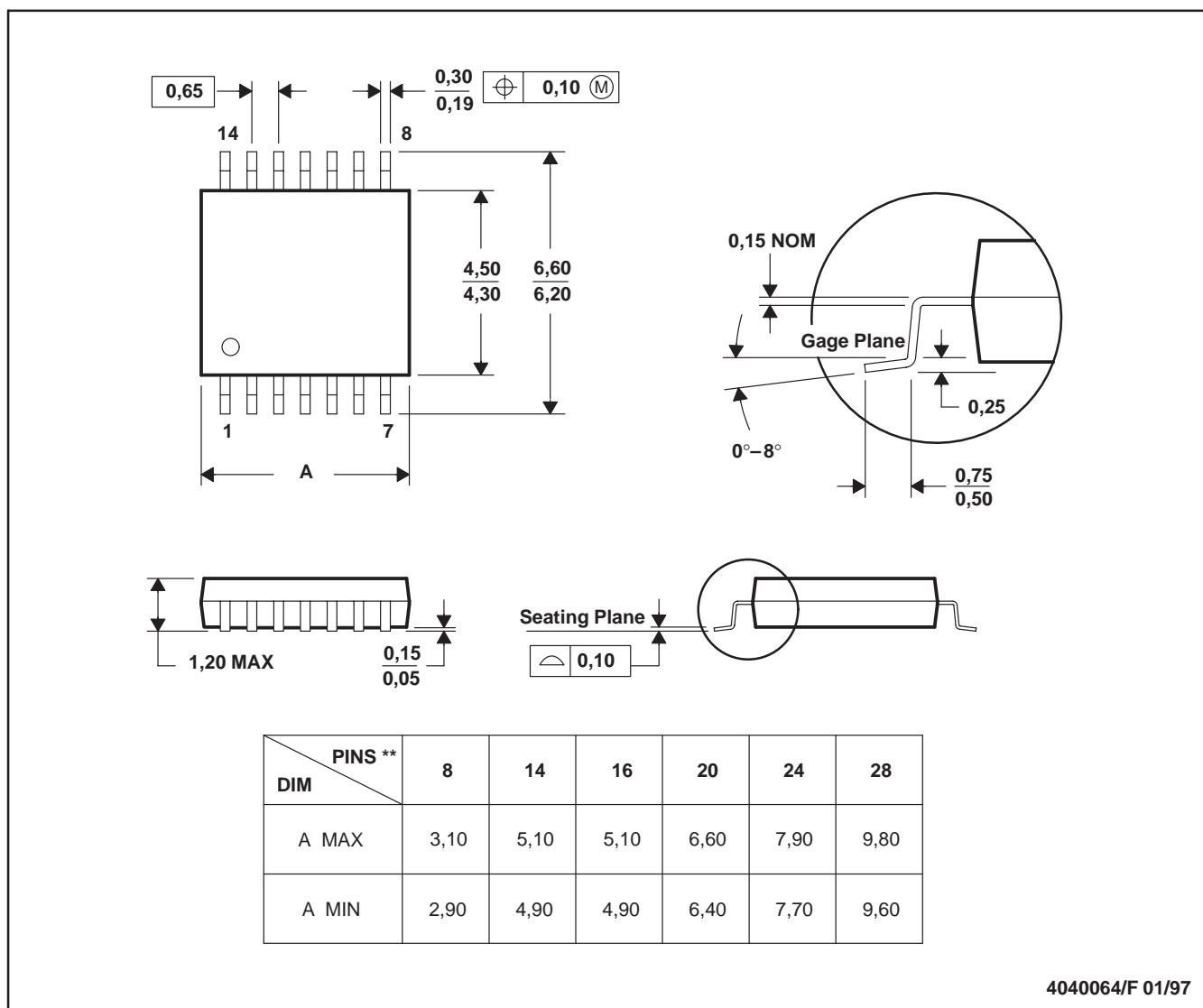

4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN



NOTES: A. All linear dimensions are in millimeters.
 B. This drawing is subject to change without notice.
 C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
 D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated