SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 - Low-Voltage Operation . . . Down to 1.24 V - Reference Voltage Tolerances are: 0.5% for TLV431B, 1% for TLV431A, and 1.5% for TLV431 - Adjustable Output Voltage, V_O = V_{REF} to 6 V - Low Operational Cathode Current . . . 80 μA Typ - 0.25-Ω Typical Output Impedance - –40°C to 125°C Specifications **DBV (SOT23-5) PACKAGE** NC - No internal connection LP (TO-92/T0-226) PACKAGE (TOP VIEW) #### description/ordering information The TLV431A, and TLV431B are low-voltage 3-terminal adjustable voltage references with specified thermal stability over applicable industrial and commercial temperature ranges. Output voltage can be set to any value between V_{REF} (1.24 V) and 6 V with two external resistors (see Figure 2). These devices operate from a lower voltage (1.24 V) than the widely used TL431 and TL1431 shunt-regulator references. When used with an optocoupler, the TLV431, TLV431A, and TLV431B are ideal voltage references in isolated feedback circuits for 3-V to 3.3-V switching-mode power supplies. These devices have a typical output impedance of 0.25 Ω . Active output circuitry provides a very sharp turn-on characteristic, making the TLV431, TLV431A, and TLV431B excellent replacements for low-voltage Zener diodes in many applications, including on-board regulation and adjustable power supplies. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 #### description/ordering information (continued) #### **ORDERING INFORMATION** | ТЈ | V _{REF}
TOLERANCE | PACK | PACKAGE† | | TOP-SIDE
MARKING | |-------------|-------------------------------|------------------|--------------|--------------|---------------------------| | | | 00 70 (DOK) | Reel of 3000 | TLV431BCDCKR | DDE VIEW | | | | SC-70 (DCK) | Reel of 250 | TLV431BCDCKT | PREVIEW | | | | 007 00 7 (77) () | Reel of 3000 | TLV431BCDBVR | PREVIEW | | | | SOT-23-5 (DBV) | Reel of 250 | TLV431BCDBVT | 1 112 112 1 | | | 0.5% | 00T 00 0 (DDZ) | Reel of 3000 | TLV431BCDBZR | DDEVIEW | | | | SOT-23-3 (DBZ) | Reel of 250 | TLV431BCDBZT | PREVIEW | | | | SOT-89 (PK) | Reel of 1000 | TLV431BCPK | PREVIEW | | | | TO-92 (LP) | Bulk of 1000 | TLV431BCLP | DDEVIEW | | | | | Reel of 2000 | TLV431BCLPR | PREVIEW | | 0°C to 70°C | 1% | SOT-23-5 (DBV) | Reel of 3000 | TLV431ACDBVR | 3t 8 | | | | | Reel of 250 | TLV431ACDBVT | VAHC [‡] , YAC_§ | | | | SOT-23-3 (DBZ) | Reel of 3000 | TLV431ACDBZR | YAC_\$ | | | | TO 00 (LD) | Bulk of 1000 | TLV431ACLP | V404A0 | | | | TO-92 (LP) | Reel of 2000 | TLV431ACLPR | V431AC | | | | 00T 00 5 (DD) () | Reel of 3000 | TLV431CDBVR | VAUT VOL 8 | | | | SOT-23-5 (DBV) | Reel of 250 | TLV431CDBVT | VAII [‡] , Y3I_§ | | | 1.5% | SOT-23-3 (DBZ) | Reel of 3000 | TLV431CDBZR | Y3I_\$ | | | | TO 02 (LP) | Bulk of 1000 | TLV431CLP | V431C | | | | TO-92 (LP) | Reel of 2000 | TLV431CLPR | V4310 | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. [‡] Possible top-side marking on units prior to August 16, 2004. [§] DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site. SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 ### description/ordering information (continued) #### **ORDERING INFORMATION (continued)** | TJ | V _{REF}
TOLERANCE | PACK | AGE† | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |---------------|-------------------------------|-------------------|--------------|--------------------------|---------------------------| | | | 00 70 (DOM) | Reel of 3000 | TLV431BIDCKR | PREVIEW | | | | SC-70 (DCK) | Reel of 250 | TLV431BIDCKT | PKEVIEW | | | | 007.00 7 (7.7) () | Reel of 3000 | TLV431BIDBVR | PREVIEW | | | | SOT-23-5 (DBV) | Reel of 250 | TLV431BIDBVT | | | | 0.5% | COT 00 0 (DD7) | Reel of 3000 | TLV431BIDBZR | PREVIEW | | | | SOT-23-3 (DBZ) | Reel of 250 | TLV431BIDBZT | | | | | SOT-89 (PK) | Reel of 1000 | TLV431BIPK | PREVIEW | | | | TO-92 (LP) | Bulk of 1000 | TLV431BILP | PREVIEW | | | | | Reel of 2000 | TLV431BILPR | | | | 1% | SOIC (D) | Tube of 75 | TLV431AID | T)/4044 | | -40°C to 85°C | | | Reel of 2500 | TLV431AIDR | TY431A | | -40 C to 65 C | | SOT-23-5 (DBV) | Reel of 3000 | TLV431AIDBVR | VALUE VAL 8 | | | | | Reel of 250 | TLV431AIDBVT | VAHI‡, YAI_§ | | | | SOT-23-3 (DBZ) | Reel of 3000 | TLV431AIDBZR | YAI_§ | | | | | Bulk of 1000 | TLV431AILP | | | | | TO-92 (LP) | Ammo of 2000 | TLV431AILPM | V431AI | | | | | Reel of 2000 | TLV431AILPR | | | | | SOT 22 5 (DB\/) | Reel of 3000 | TLV431IDBVR | VAII [‡] , Y3I_§ | | | | SOT-23-5 (DBV) | Reel of 250 | TLV431IDBVT | VAII+, I SI_S | | | 1.5% | SOT-23-3 (DBZ) | Reel of 3000 | TLV431IDBZR | Y3I_§ | | | | TO-92 (LP) | Bulk of 1000 | TLV431ILP | V431I | | | | 10-92 (LP) | Reel of 2000 | TLV431ILPR | V + 3 11 | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. [‡] Possible top-side marking on units prior to August 16, 2004. [§] DBV/DBZ: The actual top-side marking has one additional character that designates the assembly/test site. SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 #### description/ordering information (continued) #### **ORDERING INFORMATION (continued)** | TJ | V _{REF}
TOLERANCE | PACKA | GE† | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |----------------|-------------------------------|------------------|--------------|--------------------------|---------------------| | | | 00 70 (DOV) | Reel of 3000 | TLV431BQDCKR | PREVIEW | | | | SC-70 (DCK) | Reel of 250 | TLV431BQDCKT | PKEVIEW | | | | 00T 00 5 (DD) () | Reel of 3000 | TLV431BQDBVR | PREVIEW | | | | SOT-23-5 (DBV) | Reel of 250 | TLV431BQDBVT | LIXEAIEAA | | | 0.5% | 007.00.0 (DD7) | Reel of 3000 | TLV431BQDBZR | PREVIEW | | | | SOT-23-3 (DBZ) | Reel of 250 | TLV431BQDBZT | I IVE VIEVV | | | | SOT-89 (PK) | Reel of 1000 | TLV431BQPK | PREVIEW | | | | TO-92 (LP) | Bulk of 1000 | TLV431BQLP | PREVIEW | | | | 10-92 (LP) | Reel of 2000 | TLV431BQLPR | 111211211 | | | 1% | SC-70 (DCK) | Reel of 3000 | TLV431AQDCKR | DDEVIEW | | | | | Reel of 250 | TLV431AQDCKT | PREVIEW | | | | SOIC (D) | Tube of 75 | TLV431AQD | DDEVIEW | | | | | Reel of 2500 | TLV431AQDR | PREVIEW | | | | SOT-23-5 (DBV) | Reel of 3000 | TLV431AQDBVR | PREVIEW | | -40°C to 125°C | | | Reel of 250 | TLV431AQDBVT | PKEVIEW | | | | SOT-23-3 (DBZ) | Reel of 3000 | TLV431AQDBZR | PREVIEW | | | | | Reel of 250 | TLV431AQDBZT | PKEVIEW | | | | SOT-89 (PK) | Reel of 1000 | TLV431AQPK | PREVIEW | | | | TO-92 (LP) | Bulk of 1000 | TLV431AQLP | PREVIEW | | | | | Reel of 2000 | TLV431AQLPR | 11(=11=11 | | | | 00 70 (DOV) | Reel of 3000 | TLV431QDCKR | PREVIEW | | | | SC-70 (DCK) | Reel of 250 | TLV431QDCKT | | | | | 00T 00 5 (DD) () | Reel of 3000 | TLV431QDBVR | PREVIEW | | | | SOT-23-5 (DBV) | Reel of 250 | TLV431QDBVT | 11(201200 | | | 1.5% | COT 02 2 (DDZ) | Reel of 3000 | TLV431QDBZR | DDE\/IE\M | | | | SOT-23-3 (DBZ) | Reel of 250 | TLV431QDBZT | PREVIEW | | | | SOT-89 (PK) | Reel of 1000 | TLV431QPK | PREVIEW | | | | TO 02 (LD) | Bulk of 1000 | TLV431QLP | DD EV/IEW/ | | | | TO-92 (LP) | Reel of 2000 | TLV43IQLPR | PREVIEW | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 # logic block diagram # equivalent schematic SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 # absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Cathode voltage, V _{KA} (see Note 1) | | 7 V | |---|-------------|-----------------| | Continuous cathode current range, I _K | | | | Reference current range, I _{ref} | | 0.05 mA to 3 mA | | Package thermal impedance, θ _{JA} (see Notes 2 and 3): | : D package | 97°C/W | | | DBV package | 206°C/W | | | DBZ package | TBD°C/W | | | DCK package | 252°C/W | | | LP package | 140°C/W | | | PK package | 52°C/W | | Operating virtual junction temperature | | 150°C | | Storage temperature range, T _{stq} | | 65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. Voltage values are with respect to the anode terminal, unless otherwise noted. - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. #### recommended operating conditions | | | | MIN | MAX | UNIT | |-----|--------------------------------------|----------|------|-----|------| | VKA | Cathode voltage | | VREF | 6 | V | | ΙK | Cathode current | | 0.1 | 15 | mA | | | | TLV431_C | 0 | 70 | | | TA | Operating free-air temperature range | TLV431_I | -40 | 85 | °C | | | | TLV431_Q | -40 | 125 | | SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 #### TLV431 electrical characteristics at 25°C free-air temperature (unless otherwise noted) | PARAMETER | | | A NOVE TIAN IS | | | TLV431 | | | |--|---|---|--|---------|-------|--------|-------|------| | | | TEST CONDITIONS | | | MIN | TYP | MAX | UNIT | | | | | T _A = 25°C | | 1.222 | 1.24 | 1.258 | | | | Defenses welleng | VKA = VRFF, | $V_{KA} = V_{REF}$, $T_A = \text{full range}$ | TLV431C | 1.21 | | 1.27 | ., | | VREF | Reference voltage | $I_K = 10 \text{ mA}$ | (see Note 4 and | TLV431I | 1.202 | | 1.278 | V | | | | | Figure 1) | TLV431Q | | | | | | | | ., ., . | | TLV431C | | 4 | 12 | | | V _{REF(dev)} | V _{REF} deviation over full temperature range (see Note 4) | (see Note 4 and Figure 1) | | TLV431I | | 6 | 20 | mV | | | temperature range (see Note 4) | | | TLV431Q | | | | | | $\frac{\Delta V_{RE}F}{\Delta V_{KA}}$ | Ratio of V _{REF} change in cathode voltage change | I _K = 10 mA
(see Figure 2) | V _{KA} = V _{REF} to 6 V | | | -1.5 | -2.7 | mV/V | | I _{ref} | Reference terminal current | I_K = 10 mA, R1 = 10 kΩ, R2 = open (see Figure 2) | | | | 0.15 | 0.5 | μΑ | | | | | | TLV431C | | 0.05 | 0.3 | | | I _{ref(dev)} | I _{ref} deviation over full temperature range (see Note 4) | | = 10 k Ω , R2 = open | TLV431I | | 0.1 | 0.4 | μΑ | | , | temperature range (see Note 4) | (see Note 4 and Figure 2) | | TLV431Q | | | | | | I _{K(min)} | Minimum cathode current for regulation | V _{KA} = V _{REF} (see Figure 1) | | | | 55 | 80 | μΑ | | I _{K(off)} | Off-state cathode current | V _{REF} = 0, V _{KA} = 6 V (see Figure 3) | | | | 0.001 | 0.1 | μΑ | | IzKAI | Dynamic impedance (see Note 5) | $V_{KA} = V_{REF}, f \le I_{K} = 0.1 \text{ mA to } 1.0 \text{ mA}$ | 1 kHz,
5 mA (see Figure 1) | | | 0.25 | 0.4 | Ω | NOTES: 4. Full temperature ranges are: -40°C to 125°C for TLV431Q, -40°C to 85°C for TLV431I, and 0°C to 70°C for the TLV431C. The deviation parameters V_{REF(dev)} and I_{ref(dev)} are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as: $$|\alpha V_{REF}| \binom{ppm}{{}^{\circ}C} = \frac{\left(\frac{V_{REF}(dev)}{V_{REF}(T_A = 25 {}^{\circ}C)}\right) \times 10^6}{\Delta T_A}$$ where $\Delta T_{\mbox{\scriptsize A}}$ is the rated operating free-air temperature range of the device. α_{VREF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower temperature. 6. The dynamic impedance is defined as: $|z_{ka}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$ When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined as: $|z_{ka}|' = \frac{\Delta V}{\Delta I} \approx |z_{ka}| \times (1 + \frac{R1}{R2})$ SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 #### TLV431A electrical characteristics at 25°C free-air temperature (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | | TLV431A | | | | |---|---|---|---|----------|---------|-------|-------|------| | | | | | | MIN | TYP | MAX | UNIT | | | | | T _A = 25°C | | 1.228 | 1.24 | 1.252 | | | | Defenses wellens | $V_{KA} = V_{REF}$, $T_A = \text{full range}$ | TLV431AC | 1.221 | | 1.259 | ., | | | V _{REF} | Reference voltage | $I_K = 10 \text{ mA}$ | (see Note 3 and | TLV431AI | 1.215 | | 1.265 | V | | | | | Figure 1) | TLV431AQ | | | | | | | | | | TLV431AC | | 4 | 12 | | | V _{REF(dev)} | V _{REF} deviation over full temperature range (see Note 4) | V _K A = V _{REF} , I _K = 10 mA
(see Note 3 and Figure 1) | | TLV431AI | | 6 | 20 | mV | | (***) | temperature range (see Note 4) | | | TLV431AQ | | | | | | $\frac{\Delta V_{RE}}{\Delta V_{KA}}$ F | Ratio of V _{REF} change in cathode voltage change | I _K = 10 mA
(see Figure 2) | V _{KA} = V _{REF} to 6 V | | | -1.5 | -2.7 | mV/V | | I _{ref} | Reference terminal current | I_K = 10 mA, R1 = 10 kΩ, R2 = open (see Figure 2) | | | | 0.15 | 0.5 | μА | | | | | | TLV431AC | | 0.05 | 0.3 | | | I _{ref(dev)} | I _{ref} deviation over full temperature range (see Note 4) | | = $10 \text{ k}\Omega$, R2 = open | TLV431AI | | 0.1 | 0.4 | μА | | (, | temperature range (see Note 4) | (see Note 3 and Figure 2) | | TLV431AQ | | | | | | IK(min) | Minimum cathode current for regulation | V _{KA} = V _{REF} (see Figure 1) | | | | 55 | 80 | μА | | I _{K(off)} | Off-state cathode current | V _{REF} = 0, V _{KA} = 6 V (see Figure 3) | | | | 0.001 | 0.1 | μΑ | | Izkal | Dynamic impedance (see Note 5) | $V_{KA} = V_{REF}$, $f \le I_{K} = 0.1$ mA to 1: | 1 kHz,
5 mA (see Figure 1) | | | 0.25 | 0.4 | Ω | NOTES: 3. Full temperature ranges are: -40°C to 125°C for TLV431AQ, -40°C to 85°C for TLV431AI, and 0°C to 70°C for the TLV431AC. 4. The deviation parameters V_{REF}(dev) and I_{ref}(dev) are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as: $$|\alpha V_{REF}| \left(\frac{ppm}{^{\circ}C}\right) = \frac{\left(\frac{V_{REF}(dev)}{V_{REF}(T_A = 25^{\circ}C)}\right) \times 10^{6}}{\Delta T_A}$$ where ΔT_A is the rated operating free-air temperature range of the device. α_{VREF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower temperature. 5. The dynamic impedance is defined as: $|z_{ka}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$ When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined as: $$|z_{ka}|' = \frac{\Delta V}{\Delta I} \approx |z_{ka}| \times (1 + \frac{R1}{R2})$$ SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 #### TLV431B electrical characteristics at 25°C free-air temperature (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | | Т | LV431B | } | | |--|---|---|---|----------|-------|--------|-------|------| | | | TEST | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | | | | T _A = 25°C | | | 1.234 | 1.24 | 1.246 | | | \ | Defenses veltage | V _{KA} = V _{REF} , | T _A = full range | TLV431BC | 1.227 | | 1.253 | V | | VREF | Reference voltage | $I_K = 10 \text{ mA}$ | (see Note 3 and | TLV431BI | 1.224 | | 1.259 | V | | | | | Figure 1) | TLV431BQ | | | | | | | | ., ., . | | TLV431BC | | 4 | 12 | | | V _{REF(dev)} | V _{REF} deviation over full temperature range (see Note 4) | VKA = VREF, IK = 10 mA
(see Note 3 and Figure 1) | | TLV431BI | | 6 | 20 | mV | | | temperature range (see Note 4) | | | TLV431BQ | , S | | 7 | | | $\frac{\Delta V_{RE}F}{\Delta V_{KA}}$ | Ratio of V _{REF} change in cathode voltage change | I _K = 10 mA
(see Figure 2) | V _{KA} = V _{REF} to 6 V | | | -1.5 | -2.7 | mV/V | | I _{ref} | Reference terminal current | I_K = 10 mA, R1 = 10 kΩ, R2 = open (see Figure 2) | | | | 0.15 | 0.5 | μΑ | | | | | | TLV431BC | Q | 0.05 | 0.3 | | | I _{ref(dev)} | I _{ref} deviation over full temperature range (see Note 4) | | = 10 k Ω , R2 = open | TLV431BI | | 0.1 | 0.4 | μΑ | | (11) | temperature range (see Note 4) (see Note 3 and Figure | | rigure 2) | TLV431BQ | | | | | | I _{K(min)} | Minimum cathode current for regulation | V _{KA} = V _{REF} (see Figure 1) | | | | 55 | 80 | μΑ | | I _{K(off)} | Off-state cathode current | V _{REF} = 0, V _{KA} = 6 V (see Figure 3) | | | | 0.001 | 0.1 | μΑ | | Izkal | Dynamic impedance (see Note 5) | $V_{KA} = V_{REF}, f \le I_{K} = 0.1 \text{ mA to } 1.0 \text{ mA}$ | 1 kHz,
5 mA (see Figure 1) | | | 0.25 | 0.4 | Ω | NOTES: 3. Full temperature ranges are: -40°C to 125°C for TLV431BQ, -40°C to 85°C for TLV431BI, and 0°C to 70°C for the TLV431BC. 4. The deviation parameters V_{REF}(dev) and I_{ref}(dev) are defined as the differences between the maximum and minimum values obtained over the rated temperature range. The average full-range temperature coefficient of the reference input voltage, αV_{REF}, is defined as: $$|\alpha V_{REF}| \binom{ppm}{^{\circ}C} = \frac{\left(\frac{V_{REF}(dev)}{V_{REF}\left(T_{A} = 25^{\circ}C\right)}\right) \times 10^{6}}{\Delta T_{A}}$$ where ΔT_A is the rated operating free-air temperature range of the device. α_{VREF} can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF} , respectively, occurs at the lower temperature. lower temperature. 5. The dynamic impedance is defined as $|z_{ka}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$ When the device is operating with two external resistors (see Figure 2), the total dynamic impedance of the circuit is defined $|z_{ka}|' = \frac{\Delta V}{\Delta I} \approx |z_{ka}| \times (1 + \frac{R1}{R2})$ Figure 1. Test Circuit for $V_{KA} = V_{REF}$, $V_O = V_{KA} = V_{REF}$ Figure 2. Test Circuit for $V_{KA} > V_{REF}$, $V_O = V_{KA} = V_{REF} \times (1 + R1/R2) + I_{ref} \times R1$ Figure 3. Test Circuit for I_{K(off)} #### PARAMETER MEASUREMENT INFORMATION[†] [†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. #### PARAMETER MEASUREMENT INFORMATION[†] [†]Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. † Extrapolated from life-test data taken at 125°C; the activation energy assumed is 0.7 eV. Figure 10 #### **EQUIVALENT INPUT NOISE VOLTAGE** TEST CIRCUIT FOR EQUIVALENT NOISE VOLTAGE Figure 11 # EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD TEST CIRCUIT FOR 0.1-Hz TO 10-Hz EQUIVALENT NOISE VOLTAGE Figure 12 # SMALL-SIGNAL VOLTAGE GAIN /PHASE MARGIN TEST CIRCUIT FOR VOLTAGE GAIN AND PHASE MARGIN Figure 13 # REFERENCE IMPEDANCE TEST CIRCUIT FOR REFERENCE IMPEDANCE Figure 14 **TEST CIRCUIT FOR PULSE RESPONSE 1** Figure 15 **TEST CIRCUIT FOR PULSE RESPONSE 2** Figure 16 #### STABILITY BOUNDARY CONDITION[‡] TEST CIRCUIT FOR $V_{KA} = V_{REF}$ TEST CIRCUIT FOR V_{KA} = 2 V, 3 V † Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Figure 17 [‡] The areas under the curves represent conditions that may cause the device to oscillate. For $V_{KA} = 2 \text{ V}$ and 3 V curves, R2 and V_{bat} were adjusted to establish the initial V_{KA} and I_{K} conditions with $C_{L} = 0$. V_{bat} and C_{L} then were adjusted to determine the ranges of stability. SLVS139K - JULY 1996 - REVISED SEPTEMBER 2004 #### **APPLICATION INFORMATION** Figure 18. Flyback With Isolation Using TLV431, TLV431A, or TLV431B as Voltage Reference and Error Amplifier Figure 18 shows the TLV431, TLV431A, or TLV431B used in a 3.3-V isolated flyback supply. Output voltage V_O can be as low as reference voltage V_{REF} (1.24 V \pm 1%). The output of the regulator, plus the forward voltage drop of the optocoupler LED (1.24 + 1.4 = 2.64 V), determine the minimum voltage that can be regulated in an isolated supply configuration. Regulated voltage as low as 2.7 Vdc is possible in the above topology. # PK (R-PSSO-F3) # PLASTIC SINGLE-IN-LINE PACKAGE NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994. - B. This drawing is subject to change without notice. - C. The center lead is in electrical contact with the tab. - Falls within JEDEC TO-243 variation AA, except minimum lead length, pin 2 minimum lead width, and minimum tab width. # DBV (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - All linear dimensions are in millimeters. - This drawing is subject to change without notice. - C. Body dimensions do not include mold fla D. Falls within JEDEC MO—178 Variation AA. Body dimensions do not include mold flash or protrusion. # DBZ (R-PDSO-G3) ### PLASTIC SMALL-OUTLINE NOTES: A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Dimensions are inclusive of plating. - D. Dimensions are exclusive of mold flash and metal burr. # D (R-PDSO-G8) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-012 variation AA. #### LP (O-PBCY-W3) #### PLASTIC CYLINDRICAL PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. $\hfill \hfill \$ C.\ Lead dimensions are not controlled within this area D. FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92) E. Shipping Method: Straight lead option available in bulk pack only. Formed lead option available in tape & reel or ammo pack. #### LP (O-PBCY-W3) #### PLASTIC CYLINDRICAL PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Tape and Reel information for the Format Lead Option package. #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated