48V_{in} 1.5V_{out} 15A # 15 Amp, No Heatsink, Isolated DC/DC Converter The PQ60015QML15 PowerQorTM Mega quarterbrick converter is a next-generation, board-mountable, isolated, fixed switching frequency DC/DC converter that uses synchronous rectification to achieve very high conversion efficiency. The power dissipated by the converter is so low that a heatsink is not required, which saves cost, weight, height, and application effort. All of the power and control components are mounted to the multi-layer PCB substrate with high-yield surface mount technology, yielding an extremely reliable product that is less than 8.5mm in height. The Mega series offer significant useable output current in an economical standard "quarter-brick" module. - High efficiency allows low power dissipation - Delivers up to 15 amps of output current with minimal derating - no heatsink required - Wide input voltage range: 35V 75V, with 100V 100ms input voltage transient protection - Fixed frequency switching provides predictable EMI performance - No minimum load requirement means no preload resistors required ## Mechanical Features - Industry standard quarter-brick pin-out configuration - Industry standard size: 1.45" x 2.3" - Total height only 8.5mm (0.335"), permits better airflow and smaller card pitch, meets NTT regs. - Total weight: 34 grams (1.2 oz.), lower mass greatly reduces vibration and shock problems #### Control Features - On/Off control referenced to input side (positive and negative logic options are available) - Remote sense for the output voltage compensates for output distribution drops - Output voltage trim permits custom voltages and voltage margining PQ60015QML15 Module ## **Protection Features** - Input under-voltage lockout disables converter at low input voltage conditions - Output current limit and short circuit protection protects converter from excessive load current or short circuits - Output over-voltage protection protects load from damaging voltages - Thermal shutdown protects converter from abnormal environmental conditions ## Safety Features - 2000V, 10 M Ω input-to-output isolation provides input/output ground separation - UL/cUL 60950 recognized (US & Canada), basic insulation rating - TUV certified to EN60950 - Meets 72/23/EEC and 93/68/EEC directives which facilitates CE Marking in user's end product - Board and plastic components meet UL94V-0 flammability requirements Product # PQ60015QML15 Doc.# 005-2QM651E Rev. A Quarter Brick 48V_{in} 1.5V_{out} 15A #### **NOTES** - 1) Pins 1-3, 5-7 are 0.040" (1.02mm) diameter with 0.080" (2.03 mm) diameter standoff shoulders. - 2) Pins 4 and 8 are 0.062" (1.57 mm) diameter with 0.100" (2.54 mm) diameter standoff shoulders. - 3) Other pin extension lengths available. Recommended pin length is 0.03" (0.76mm) greater than the PCB thickness. - 4) All Pins: Material Copper Alloy Finish - Tin/Lead over Nickel plate - 5) Undimensioned components are shown for visual reference only. - 6) All dimensions in inches (mm) Tolerances: x.xx +/-0.02 in. (x.x +/-0.5mm) x.xxx +/-0.010 in. (x.xx +/-0.25mm) - 7) Weight: 1.2 oz. (34 g) typical - 8) Workmanship: Meets or exceeds IPC-A-610C Class II - 9) UL/TUV standards require a clearance greater than 0.04" (1.02mm) between input and output for Basic insulation. This issue should be considered if any copper traces are on the top side of the user's board. Note that the ferrite cores are considered part of the input/primary circuit. #### PIN CONNECTIONS | Pin No. | Name | Function | |---------|----------|--| | 1 | Vin(+) | Positive input voltage | | 2 | ON/OFF | TTL input to turn converter on and off, referenced to Vin(-), with internal pull up. | | 3 | Vin(-) | Negative input voltage | | 4 | Vout(-) | Negative output voltage | | 5 | SENSE(-) | Negative remote sense ¹ | | 6 | TRIM | Output voltage trim ² | | 7 | SENSE(+) | Positive remote sense ³ | | 8 | Vout(+) | Positive output voltage | #### Notes: - 1. Pin 5 must be connected to Vout(-). - 2. Leave Pin 6 open for nominal output voltage. - 3. Pin 7 must be connected to Vout(+). Quarter Brick 48V_{in} 1.5V_{out} 15A ## PQ60015QML15 ELECTRICAL CHARACTERISTICS $T_A=25^{\circ}\text{C}$, airflow rate=300 LFM, $V_{in}=48\text{Vdc}$ unless otherwise noted; full operating temperature range is -40°C to +100°C ambient temperature with appropriate power derating. Specifications subject to change without notice. | Parameter | Min. | Тур. | Max. | Units | Notes & Conditions | |--|----------|------------|-----------|------------------|---| | ABSOLUTE MAXIMUM RATINGS | | 7. | | | | | Input Voltage | | | | | | | Non-Operating | | | 100 | V | continuous | | Operating | | | 80 | v | continuous | | Operating Transient Protection | | | 100 | V | 100ms transient | | Isolation Voltage (input to output) | | | 2000 | V | Basic level, Pollution Degree 2 | | | -40 | | 100 | °C | basic level, i oliolioli Degree 2 | | Operating Temperature | -55 | | 125 | .C | | | Storage Temperature | -33 | | | V | | | Voltage at ON/OFF input pin | -2 | | 18 | ٧ | | | INPUT CHARACTERISTICS | 2.5 | 4.0 | 7.5 | V | | | Operating Input Voltage Range | 35 | 48 | 75 | ٧ | | | Input Under-Voltage Lockout | 00 | 0.0 | 0.4 | | | | Turn-On Voltage Threshold | 32 | 33 | 34 | V | | | Turn-Off Voltage Threshold | 28.5 | 29.5 | 30.5 | V | | | Lockout Hysteresis Voltage | 2.5 | 3.5 | 4.5 | V | | | Maximum Input Current | | | 1.0 | A | 100% Load, 35 Vin | | No-Load Input Current | | 30 | 60 | mA | | | Disabled Input Current | | 1.9 | 4 | mΑ | | | Inrush Current Transient Rating | | 0.01 | | A ² s | | | Response to Input Transient | | 150 | | mV | 1000V/ms input transient | | Input Reflected-Ripple Current | | 5 | | mA | P-P thru 10µH inductor; Figs. 13 & 15 | | Recommended Input Fuse | | | 20 | Α | fast blow external fuse recommended | | Input Filter Component Values (C\L) | | 1.64\4.7 | | μF\μH | internal values, see Figure E | | Recommended External Input Capacitance | 33 | 47 | | μF | see Figure 13 | | OUTPUT CHARACTERISTICS | 00 | ٠, | | Pi | 300 119010 10 | | Output Voltage Set Point | 1.485 | 1.500 | 1.515 | V | | | Output Voltage Pegulation | 1.405 | 1.500 | 1.515 | · · | | | Output Voltage Regulation | | +0.1 \ 2 | ±0.15 \ 5 | %\mV | | | Over Line | | ±0.1\2 | | | | | Over Load | | ±0.1\2 | ±0.15 \ 5 | %\mV | | | Over Temperature | 1.47 | <u>±</u> 6 | ±20 | mV | | | Total Output Voltage Range | 1.46 | | 1.54 | V | over sample, line, load, temperature & life | | Output Voltage Ripple and Noise | | | | | 20MHz bandwidth; Fig. 13 & 16 | | Peak-to-Peak | | 50 | 100 | mV | Full Load, see Figures 13 & 16 | | RMS | | 10 | 20 | mV | Full Load, see Figures 13 & 16 | | Operating Output Current Range | 0 | | 15 | A | | | Output DC Current-Limit Inception | 16 | 18 | 20 | Α | Output Voltage 10% Low; Fig. 17 | | Output DC Current-Limit Shutdown Voltage | | 0.66 | | V | ' ' ' | | Back-Drive Current Limit while Enabled | 0.5 | 1.0 | 2.0 | Α | Max negative current drawn from output | | Back-Drive Current Limit while Disabled | 0 | 10 | 50 | mΑ | Max negative current drawn from output | | Maximum Output Capacitance | | | 40,000 | υF | 1.5Vout at 15A Resistive Load | | DYNAMIC CHARACTERISTICS | | | , | P. | | | Input Voltage Ripple Rejection | | 80 | | dB | 120 Hz; Fig. 20 | | Output Voltage during Load Current Transient | | | | ab ab | 120 112, 119. 20 | | Step Change in Output Current (0.1A/µs) | | 80 | | mV | 50% to 75% to 50% lout max; Figure 11 | | Step Change in Output Current (5A/µs) | | 100 | | | 50% to 75% to 50% lout max; Figure 12 | | Siep Change in Output Current (SA/ µs) | | | | mV | 30% to 73% to 30% lour max; Figure 12 | | Settling Time | | 400 | | μs | to within 1% Vout nom | | Turn-On Transient | | 4 | _ | | F | | Turn-On Time | 100 | 4 | 8 | ms | Full load, Vout=90% nom.; Figs. 9 & 10 | | Start-Up Inhibit Time | 180 | 200 | 215 | ms | -40°C to +125°C; Figure F | | Output Voltage Overshoot | <u> </u> | 0 | <u> </u> | % | 10,000 µF load capacitance, lout = 0A | | EFFICIENCY | | | | | | | 100% Load | | 78 | | %
% | Figures 1 - 4 | | 50% Load | | 80 | | % | Figures 1 - 4 | | TEMPERATURE LIMITS FOR POWER DERATING CURVES | | | | | | | Semiconductor Junction Temperature | | | 125 | °C | Package rated to 150°C | | Board Temperature | | | 125 | °Č | UL rated max operating temp 130°C | | Transformer Temperature | | | 125 | °Č | See Figures 5 - 8 for derating curves | | ISOLATION CHARACTERISTICS | | | 125 | | 1 000 rigoros o los defailing conves | | Isolation Voltage | | 2000 | | V | | | Isolation Voltage Isolation Resistance | | 10 | | MΩ | | | | | 470 | | | | | Isolation Capacitance | I | I 4/0 | I | рF | l | Quarter Brick 48V_{in} 1.5V_{out} 15A ## **ELECTRICAL CHARACTERISTICS (Continued)** | Parameter | Min. | Тур. | Max. | Units | Notes & Conditions | |--|------|---------|------|----------------------|---| | FEATURE CHARACTERISTICS | | | | | | | Switching Frequency | 230 | 260 | 290 | kHz | | | ON/OFF Control (Option P) | | | | | | | Off-State Voltage | -2 | | 0.8 | V | | | On-State Voltage | 2.4 | | 18 | V | | | ON/OFF Control (Ŏption N) | | | | | | | Off-State Voltage | 2.4 | | 18 | V | | | On-State Voltage | -2 | | 0.8 | V | | | ON/OFF Control (Either Option) | | | | | Figures A, B | | Pull-Up Voltage | | Vin/6.5 | 9.2 | V | | | Pull-Up Resistance | | 40 | | kΩ | | | Output Voltage Trim Range | -20 | | +10 | % | Measured across Pins 8 & 4; Figure C | | Output Voltage Remote Sense Range | | | +10 | % | Measured across Pins 8 & 4 | | Output Over-Voltage Protection | 123 | 128 | 133 | % | Over full temp range; % of nominal Vout | | Over-Temperature Shutdown | | 125 | | °C | Over full temp range; % of nominal Vout Average PCB Temperature | | Over-Temperature Shutdown Restart Hysteresis | | 10 | | °C | | | RELIABILITY CHARACTERISTICS | | | | | | | Calculated MTBF | | 2.1 | | 106 Hrs. | Telcordia TR-NWT-000332; 80% load,300LFM, 40°C T _a | | Calculated MTBF | | 1.75 | | 10 ⁶ Hrs. | MIL-HDBK-217F; 80% load, 300LFM, 40°C T _a | | Demonstrated MTBF | | TBD | | 106 Hrs. | Field demonstrated MTBF | #### STANDARDS COMPLIANCE | Parameter | Notes | |---------------------------------|--| | STANDARDS COMPLIANCE | | | UL/cUL 60950 | File # E194341, Basic insulation & pollution degree 2 | | EN60950 | Certified by TUV | | 72/23/EEC | | | 93/68/EEC | | | Needle Flame Test (IEC 695-2-2) | test on entire assembly; board & plastic components UL94V-0 compliant
ESD test, 8kV - NP, 15kV air - NP | | IEC 61000-4-2 | ESD test, 8kV - NP, 15kV air - NP | | GR-1089-CORE | Section 7 - electrical safety, Section 9 - bonding/grounding | | Telcordia (Bellcore) GR-513 | | [•] An external input fuse must always be used to meet these safety requirements ## **QUALIFICATION TESTING** | Parameter | # Units | Test Conditions | |------------------------------|---------|--| | QUALIFICATION TESTING | | | | Life Test | 32 | 95% rated Vin and load, units at derating point, 1000 hours | | Vibration | 5 | 10-55Hz sweep, 0.060" total excursion, 1 min./sweep, 120 sweeps for 3 axis | | Mechanical Shock | 5 | 100g minimum, 2 drops in x and y axis, 1 drop in z axis | | Temperature Cycling | 10 | -40°C to 100°C, unit temp. ramp 15°C/min., 500 cycles | | Power/Thermal Cycling | 5 | Toperating = min to max, Vin = min to max, full load, 100 cycles | | Design Marginality | 5 | Tmin-10°C to Tmax+10°C, 5°C steps, Vin = min to max, 0-105% load | | Humidity | 5 | 1 85°C. 85% RH. 1000 hours. 2 minutes on and 6 hours off | | Solderability | 15 pins | MIL-STD-883, method 2003 | Extensive characterization testing of all SynQor products and manufacturing processes is performed to ensure that we supply robust, reliable product. Contact factory for more information about Proof of Design and Proof of Manufacturing processes. #### **OPTIONS** SynQor provides various options for Logic Sense, Pin Length and Feature Set for this family of DC/DC converters. Please consult the last page of this specification sheet for information on available options. #### **PATENTS** SynQor is protected under various patents, including but not limited to U.S. Patent # 5,999,417. Quarter Brick 48V_{in} 1.5V_{out} Figure 1: Efficiency at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C. Figure 3: Power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at 25°C. Figure 5: Maximum output power derating curves vs. ambient air temperature for airflow rates of 0 LFM through 400 LFM with air flowing across the converter from output to input (nominal input voltage). **Figure 2:** Efficiency at nominal output voltage and 60% rated power vs. airflow rate for ambient air temperatures of 25°C, 40°C, and 55°C (nominal input voltage). **Figure 4:** Power dissipation at nominal output voltage and 60% rated power vs. airflow rate for ambient air temperatures of 25°C, 40°C, and 55°C (nominal input voltage). **Figure 6:** Thermal plot of converter at 15 amp load current with 55°C air flowing at the rate of 200 LFM. Air is flowing across the converter from output to input (nominal input voltage). Quarter Brick 48Vin 1.5Vout 15A Figure 7: Maximum output power derating curves vs. ambient air temperature for airflow rates of 0 LFM through 400 LFM with air flowing from pin 3 to pin 1 (nominal input voltage). Figure 9: Turn-on transient at full load (resistive load) (2.5 ms/div) Ch1: Vout (1V/div) Ch2: ON/OFF input (5V/div) Figure 11: Output voltage response to step-change in load current (50%-75%-50% of Iout(max); $dI/dt = 0.1A/\mu s$). Load cap: $15\mu F$, 450 m Ω ESR tantalum capacitor and 1µF ceramic capacitor. Ch1: Vout (100mV/div), Ch2: Iout (5A/div). Figure 8: Thermal plot of converter at 15 amp load current with 55°C air flowing at the rate of 200 LFM. Air is flowing across the converter from pin 3 to pin 1 (nominal input voltage). Figure 10: Turn-on transient at zero load (2.5 ms/div). Ch1: Vout (1V/div) Ch2: ON/OFF input (5V/div) Figure 12: Output voltage response to step-change in load current (50%-75%-50% of Iout(max): $dI/dt = 5A/\mu s$). Load cap: 470 μF , 30 m Ω ESR tantalum capacitor and 1µF ceramic cap. Ch1: Vout (200mV/div), Ch2: Iout (5A/div). Quarter 48Vin 1.5Vout 15A Figure 13: Test set-up diagram showing measurement points for Input Terminal Ripple Current (Figure 14), Input Reflected Ripple Current (Figure 15) and Output Voltage Ripple (Figure 16). Figure 15: Input reflected ripple current, i_s , through a 10 μH source inductor at nominal input voltage and rated load current (5 mA/div). See Figure 13. Figure 17: Output voltage vs. load current showing typical current limit curves and converter shutdown points. Figure 14: Input Terminal Ripple Current, $i_{\mathcal{C}}$ at full rated output current and nominal input voltage with $10\mu H$ source impedance and $47\mu F$ electrolytic capacitor (100 mA/div). See Figure 13. Figure 16: Output voltage ripple at nominal input voltage and rated load current (20 mV/div). Load capacitance: 1µF ceramic capacitor and 15µF tantalum capacitor. Bandwidth: 20 MHz. See Figure 13. Figure 18: Load current (5A/div) as a function of time when the converter attempts to turn on into a 1 m Ω short circuit. Top trace (2ms/div) is an expansion of the on-time portion of the bottom trace. Quarter **Brick** 48Vin 1.5Vout 15A Figure 19: Magnitude of incremental output impedance ($Z_{out} =$ v_{out}/i_{out}) for minimum, nominal, and maximum input voltage at full rated power. Figure 21: Magnitude of incremental reverse transmission (RT = i_{in}/i_{out}) for minimum, nominal, and maximum input voltage at full rated power. Figure 20: Magnitude of incremental forward transmission (FT = v_{out}/v_{in}) for minimum, nominal, and maximum input voltage at full rated power. Figure 22: Magnitude of incremental input impedance $(Z_{in} = v_{in}/i_{in})$ for minimum, nominal, and maximum input voltage at full rated power. #### BASIC OPERATION AND FEATURES The PowerQor series converter uses a two-stage power circuit topology. The first stage is a buck-converter that keeps the output voltage constant over variations in line, load, and temperature. The second stage uses a transformer to provide the functions of input/output isolation and voltage step-down to achieve the low output voltage required. Both the first stage and the second stage switch at a fixed frequency for predictable EMI performance. Rectification of the transformer's output is accomplished with synchronous rectifiers. These devices, which are MOSFETs with a very low onstate resistance, dissipate far less energy than Schottky diodes. This is the primary reason that the *PowerQor* converter has such high efficiency, even at very low output voltages and very high output currents. Dissipation throughout the converter is so low that it does not require a heatsink for operation. Since a heatsink is not required, the *PowerQor* converter does not need a metal baseplate or potting material to help conduct the dissipated energy to the heatsink. The *PowerQor* converter can thus be built more simply and reliably using high yield surface mount techniques on a PCB substrate. The *PowerQor* series of half-brick and quarter-brick converters uses the industry standard footprint and pin-out configuration. # **Technical Specification** Quarter Brick 48V_{in} 1.5V_{out} 15A #### CONTROL FEATURES **REMOTE ON/OFF (Pin 2**): The ON/OFF input, Pin 2, permits the user to control when the converter is *on* or *off*. This input is referenced to the return terminal of the input bus, Vin(-). There are two versions of the converter that differ by the sense of the logic used for the ON/OFF input. In the positive logic version, the ON/OFF input is active high (meaning that a high turns the converter on). In the negative logic version, the ON/OFF signal is active low (meaning that a low turns the converter on). Figure A details five possible circuits for driving the ON/OFF pin. Figure B is a detailed look of the internal ON/OFF circuitry. **REMOTE SENSE(\pm)** (**Pins 7 and 5**): The SENSE(\pm) inputs correct for voltage drops along the conductors that connect the converter's output pins to the load. Pin 7 should be connected to Vout(+) and Pin 5 should be connected to Vout(-) at the point on the board where regulation is desired. A remote connection at the load can adjust for a voltage drop only as large as that specified in this datasheet, that is $$[Vout(+) - Vout(-)] - [SENSE(+) - SENSE(-)] \le$$ Sense Range % x Vout Pins 7 and 5 must be connected for proper regulation of the output voltage. If these connections are not made, the converter will deliver an output voltage that is slightly lower than its specified value. Figure A: Various circuits for driving the ON/OFF pin. Figure B: Internal ON/OFF pin circuitry # SynCor Note: the output over-voltage protection circuit senses the voltage across the output (pins 8 and 4) to determine when it should trigger, not the voltage across the converter's sense leads (pins 7 and 5). Therefore, the resistive drop on the board should be small enough so that output OVP does not trigger, even during load transients. **OUTPUT VOLTAGE TRIM (Pin 6)**: The TRIM input permits the user to adjust the output voltage across the sense leads up or down according to the trim range specifications. To decrease the output voltage, the user should connect a resistor between Pin 6 and Pin 5 (SENSE(-) input). For a desired decrease of the nominal output voltage, the value of the resistor should be $$R_{trim-down} = \left(\frac{511}{\Delta\%}\right) - 10.22 \text{ (k}\Omega)$$ where $$\Delta\% = \left(\frac{\text{Vnominal} - \text{Vdesired}}{\text{Vnominal}}\right) \times 100\%$$ To increase the output voltage, the user should connect a resistor between Pin 6 and Pin 7 (SENSE(+) input). For a desired increase of the nominal output voltage, the value of the resistor should be $$R_{\text{trim-up}} = \left(\frac{5.11 V_{\text{OUT}} (100 + \Delta\%)}{1.225 \Delta\%} - \frac{511}{\Delta\%} - 10.22 \right) (k\Omega)$$ where Figure C graphs the relationship between the trim resistor value and Rtrim-up and Rtrim-down, showing the total range the output voltage can be trimmed up or down. Figure C: Trim Graph for 1.5Vout module ## **Technical Specification** Quarter Brick 48V_{in} 1.5V_{out} 15A <u>Note</u>: the TRIM feature does not affect the voltage at which the output over-voltage protection circuit is triggered. Trimming the output voltage too high may cause the over-voltage protection circuit to engage, particularly during transients. It is not necessary for the user to add capacitance at the Trim pin. The node is internally bypassed to eliminate noise. **Total DC Variation of Vout:** For the converter to meet its full specifications, the maximum variation of the DC value of Vout, due to both trimming and remote load voltage drops, should not be greater than that specified for the output voltage trim range. #### PROTECTION FEATURES **Input Under-Voltage Lockout**: The converter is designed to turn off when the input voltage is too low, helping avoid an input system instability problem, described in more detail in the application note titled "Input System Instability". The lockout circuitry is a comparator with DC hysteresis. When the input voltage is rising, it must exceed the typical Turn-On Voltage Threshold value (listed on the specification page) before the converter will turn on. Once the converter is on, the input voltage must fall below the typical Turn-Off Voltage Threshold value before the converter will turn off. **Output Current Limit**: The maximum current limit remains constant as the output voltage drops. However, once the impedance of the short across the output is small enough to make the output voltage drop below the specified Output DC Current-Limit Shutdown Voltage, the converter turns off. The converter then enters a "hiccup mode" where it repeatedly turns on and off at a 5 Hz (nominal) frequency with a 5% duty cycle until the short circuit condition is removed. This prevents excessive heating of the converter or the load board. **Output Over-Voltage Limit**: If the voltage across the output pins exceeds the Output Over-Voltage Protection threshold, the converter will immediately stop switching. This prevents damage to the load circuit due to 1) excessive series resistance in output current path from converter output pins to sense point, 2) a release of a short-circuit condition, or 3) a release of a current limit condition. Load capacitance determines exactly how high the output voltage will rise in response to these conditions. After 200 ms the converter will automatically restart. **Over-Temperature Shutdown**: A temperature sensor on the converter senses the average temperature of the module. The thermal shutdown circuit is designed to turn the converter off when the temperature at the sensed location reaches the Over-Temperature Shutdown value. It will allow the converter to turn on again when the temperature of the sensed location falls by the amount of the Over-Temperature Shutdown Restart Hysteresis value. ## **Technical Specification** Quarter Brick 48V_{in} 1.5V_{out} 15. More detailed information is available in the application note titled "EMI Characteristics" on the SynQor website. #### APPLICATION CONSIDERATIONS **Input System Instability:** This condition can occur because any DC/DC converter appears incrementally as a negative resistance load. A detailed application note titled "Input System Instability" is available on the SynQor web site (www.synqor.com) which provides an understanding of why this instability arises, and shows the preferred solution for correcting it. **Application Circuits:** Figure D below provides a typical circuit diagram which details the input filtering and voltage trimming. **Input Filtering and External Capacitance:** Figure E below provides a diagram showing the internal input filter components. This filter dramatically reduces input terminal ripple current, which otherwise could exceed the rating of an external electrolytic input capacitor. The recommended external input capacitance is specified in the "Input Characterisites" section. Figure D: Typical application circuit (negative logic unit, permanently enabled). Figure E: Internal Input Filter Diagram (component values listed on page 3). **Startup Inhibit Period:** The Startup Inhibit Period ensures that the converter will remain off for at least 200ms when it is shut down for any reason. When an output short is present, this generates a 5Hz "hiccup mode," which prevents the converter from overheating. In all, there are seven ways that the converter can be shut down, initiating a Startup Inhibit Period: - Input Under-Voltage Lockout - Input Over-Voltage Shutdown (not present in Quarter-brick) - Output Over-Voltage Protection - Over Temperature Shutdown - Current Limit - Short Circuit Protection - Turned off by the ON/OFF input Figure F shows three turn-on scenarios, where a Startup Inhibit Period is initiated at t_0 , t_1 , and t_2 : ## **Technical Specification** Quarter Brick 48V_{in} 1.5V_{out} 15A Before time t_0 , when the input voltage is below the UVL threshold, the unit is disabled by the Input Under-Voltage Lockout feature. When the input voltage rises above the UVL threshold, the Input Under-Voltage Lockout is released, and a Startup Inhibit Period is initiated. At the end of this delay, the ON/OFF pin is evaluated, and since it is active, the unit turns on. At time t_1 , the unit is disabled by the ON/OFF pin, and it cannot be enabled again until the Startup Inhibit Period has elapsed. When the ON/OFF pin goes high after t_2 , the Startup Inhibit Period has elapsed, and the output turns on within the typical Turn-On Time. *Figure F:* Startup Inhibit Period (turn-on time not to scale) #### PART NUMBERING SYSTEM The part numbering system for SynQor's *Power*Qor DC/DC converters follows the format shown in the example below. The first 12 characters comprise the base part number and the last 3 characters indicate available options. Although there are no default values for enable logic and pin length, the most common options are negative logic and 0.145" pins. These part numbers are more likely to be readily available in stock for evaluation and prototype quantities. #### **Application Notes** A variety of application notes and technical white papers can be downloaded in pdf format at www.syngor.com. ## **Technical Specification** Quarter Brick 48V_{in} 1.5V_{out} 15A #### **ORDERING INFORMATION** The tables below show the valid model numbers and ordering options for converters in this product family. When ordering SynQor converters, please ensure that you use the complete 15 character part number consisting of the 12 character base part number and the additional 3 characters for options. | Model Number | Input Voltage | | Max Output | |-----------------|---------------|---------|------------| | Woder Number | input voitage | Voltage | Current | | PQ60012QML15xyz | 35 - 75 V | 1.2 V | 15 A | | PQ60015QML15xyz | 35 - 75 V | 1.5 V | 15 A | | PQ60018QML15xyz | 35 - 75 V | 1.8 V | 15 A | | PQ60025QML15xyz | 35 - 75 V | 2.5 V | 15 A | | PQ60033QML15xyz | 35 - 75 V | 3.3 V | 15 A | | PQ60050QML15xyz | 35 - 75 V | 5.0 V | 15 A | The following option choices must be included in place of the $x\ y\ z$ spaces in the model numbers listed above. | Options Description: x y z | | | | |------------------------------|--------|--------------|--| | Enable | Pin | Feature | | | Logic | Length | Set | | | P - Positive
N - Negative | | S - Standard | | ## **Contact SynQor for further information:** Phone: 508-485-8434 Toll Free: 888-567-9596 Fax: 508-485-8414 E-mail: sales@synqor.com Web: www.synqor.com Address: 188 Central Street Hudson, MA 01749 Warranty SynQor offers a three (3) year limited warranty. Complete warranty information is listed on our web site or is available upon request from SynQor. Information furnished by SynQor is believed to be accurate and reliable. However, no responsibility is assumed by SynQor for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SynQor. Product # PQ60015QML15 Phone 1-888-567-9596 Doc.# 005-2QM651E Rev. A 8/16/02 Page 13