DM54190/DM74190, DM54191/DM74191 Synchronous Up/Down Counters with Mode Control ### **General Description** These circuits are synchronous, reversible, up/down counters. The 191 is a 4-bit binary counter and the 190 is a BCD counter. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters. The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits counting. Level changes at either the enable input or the down/up input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down. These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs. The clock, down/up, and load inputs are buffered to lower the drive requirement; which significantly reduces the number of clock drivers, etc., required for long parallel words. Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The latter output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock when the counter overflows or underflows. The ripple clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation. #### **Features** - Counts 8-4-2-1 BCD or binary - Single down/up count control line - Count enable control input - Ripple clock output for cascading - Asynchronously presettable with load control - Parallel outputs - Cascadable for n-bit applications - Average propagation delay 20 ns - Typical clock frequency 25 MHz - Typical power dissipation 325 mW ## Absolute Maximum Ratings (Note 1) Supply Voltage Input Voltage Storage Temperature Range 5.5V -- 65°C to 150°C 7V Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device can not be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation. #### Connection Diagram Dual-In-Line Package INPUTS OUTPUTS IPPI F MAY DATA CLOCK CLOCK MIN LOAD 16 15 13 112 DATA ac QD OUTPUTS OUTPUTS TL/F/6562-1 Asynchronous inputs: Low input to load sets $Q_A = A$, $Q_B = B$, $Q_C = C$, and $Q_D = D$ 54190 (J) 74190 (N) 54191 (J) 74191 (N) 6-259 ## **Recommended Operating Conditions** | Sym | Parameter | | | DM54190, 191 | | | DM74190, 191 | | | |------------------|----------------------------------|------------|------|--------------|-------|------|--------------|------|-------| | | | | Min | Nom | Max | Min | Nom | Max | Units | | V _{CC} | Supply Voltage | | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V | | V _{IH} | High Level Input
Voltage | | 2 | | | 2 | | | V | | V _{IL} | Low Level Input
Voltage | | | | 0.8 | | | 0.8 | V | | Гон | High Level Outpu
Current | u t | | | - 0.8 | | | -0.8 | mA | | loL | Low Level Outpu
Current | t | | | 16 | | | 16 | mA | | f _{CLK} | Clock Frequency | , | 0 | | 20 | 0 | | 20 | MHz | | tw | Pulse Width | Clock | 25 | | | 25 | | | ns | | | | Load | 35 | - | | 35 | | , | | | t _{SU} | Data Setup Time | | 28 | | | 28 | | | ns | | t _H | Hold Time | | 0 | | | 0 | | | ns | | t _{REL} | Load Release Tir | ne | 30 | | | 30 | | | nS | | TA | Free Air Operatir
Temperature | ng | - 55 | | 125 | 0 | | 70 | °C | #### '190 and '191 Electrical Characteristics over recommended operating free air temperature (unless otherwise noted) | Sym | Parameter | Condi | tions | Min | Typ
(Note 1) | Max | Units | |-----------------|------------------------------------|--|--------|------|-----------------|-------|-------| | V _I | Input Clamp Voltage | V _{CC} = Min, I _I = - 12 mA | | | | - 1.5 | ٧ | | V _{OH} | High Level Output
Voltage | $V_{CC} = Min, I_{OH} = Max$ $V_{IL} = Max, V_{IH} = Min$ | | 2.4 | 3.4 | | ٧ | | V _{OL} | Low Level Output
Voltage | $V_{CC} = Min, I_{OL} = Max$
$V_{IH} = Min, V_{IL} = Max$ | | | 0.2 | 0.4 | ٧ | | I ₁ | Input Current@Max
Input Voltage | $V_{CC} = Max, V_I = 5.5V$ | | | | 1 | mA | | I _{IH} | High Level Input
Current | V _{CC} = Max
V _I = 2.4V | Enable | | | 120 | μΑ | | | | | Others | | | 40 | | | I _{1L} | Low Level Input
Current | V _{CC} = Max
V _I = 0.4V | Enable | | | - 4.8 | mA | | | | | Others | | | - 1.6 | | | los | Short Circuit
Output Current | V _{CC} = Max
(Note 2) | DM54 | - 20 | | - 65 | mA | | | | | DM74 | - 18 | | - 65 | | | Icc | Supply Current | V _{CC} = Max | DM54 | | 65 | 99 | mA | | | | (Note 3) | DM74 | | 65 | 105 | | Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25\,^{\circ}C$. Note 2: Not more than one output should be shorted at a time. Note 3: I_{CC} is measured with all inputs grounded and all outputs open. ## '190 and '191 Switching Characteristics at $V_{CC}=5V$ and $T_A=25^{\circ}C$ (See Section 1 for Test Waveforms and Output Load) | Parameter | From
(Input) | | 11-12- | | | |--|--------------------------------|-----|------------------------|-----|-------| | i didinotoi | To
(Output) | Min | C _L = 15 pF | Max | Ųnits | | f _{MAX} Maximum Clock
Frequency | | 20 | 25 | | MHz | | t _{PLH} Propagation Delay
Time Low to High
Level Output | Load
to
Any Q | | 22 | 33 | ns | | t _{PHL} Propagation Delay
Time High to Low
Level Output | Load
to
Any Q | | 48 | 70 | ns | | t _{PLH} Propagation Delay
Time Low to High
Level Output | Data
to
Any Q | | 14 | 22 | ns | | t _{PHL} Propagation Delay
Time High to Low
Level Output | Data
to
Any Q | | 46 | 70 | ns | | t _{PLH} Propagation Delay
Time Low to High
Level Output | Clock
to Ripple
Carry | | 13 | 20 | ns | | t _{PHL} Propagation Delay
Time High to Low
Level Output | Clock
to Ripple
Carry | | 16 | 24 | ns | | P _{LH} Propagation Delay
Fime Low to High
Level Output | Clock
to
Any Q | | 16 | 24 | ns | | t _{PHL} Propagation Delay
Time High to Low
Level Output | Clock
to
Any Q | | 24 | 36 | ns | | t _{PLH} Propagation Delay
Time Low to High
Level Output | Clock
to
Max/Min | | 28, | 42 | ns | | t _{PHL} Propagation Delay
Time High to Low
Level Output | Clock
to
Max/Min | | 37 | 52 | ns | | PLH Propagation Delay
Fime Low to High
Level Output | Down/Up
to Ripple
Carry | | 30 | 45 | ns | | PHL Propagation Delay
Time High to Low
Level Output | Down/Up
to Ripple
Carry | | 30 | 45 | ns | | PLH Propagation Delay
Fime Low to High
Level Output | Down/Up
to
Max/Min | | 21 | 33 | ns | | PHL Propagation Delay Time High to Low Level Output | Down/Up
to
Max/Min | | 22 | 33 | ns | | PLH Propagation Delay Time Low to High Level Output | Enable G
to Ripple
Carry | | | 24 | ns | | PHL Propagation Delay Time High to Low Level Output | Enable G
to Ripple
Carry | | i | 24 | ns |