MC75450 ## DUAL PERIPHERAL POSITIVE "AND" DRIVER The MC75450 is a versatile device designed for use as a generalpurpose dual interface circuit in MDTL and MTTL type systems. This device features two standard MTTL gates and two noncommitted, high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers. - MDTL and MTTL Compatibility - 300 mA Output Current Drive Capability (each transistor) - Separate Gate and Output Transistor for Maximum Design Flexibility - High Output Breakdown Voltage: VCER = 30 Volts minimum # DUAL PERIPHERAL POSITIVE "AND" DRIVER SILICON MONOLITHIC INTEGRATED CIRCUITS #### MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|------------------|-------------|--------------------------| | Power Supply Voltage (See Note 1) | Vcc | +7.0 | Vdc | | Input Voltage (See Note 1) | Vin | 5.5 | Vdc | | V _{CC} -to-Substrate Voltage | | 35 | Vdc | | Collector-to-Substrate Voltage | | 35 | Vdc | | Collector-Base Voltage | Vcв | 35 | Vdc | | Collector-Emitter Voltage (See Note 2) | VCE | 30 | Vdc | | Emitter-Base Voltage | VEB | 5.0 | Vdc | | Collector Current (continuous) (See Note 3) | | 300 | mA | | Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25°C | PD | 830
6.6 | mW
mW/ ^o C | | Operating Temperature Range | TA | 0 to +70 | °င | | Storage Temperature Range | T _{stg} | -65 to +150 | °c | NOTES: 1. Voltage values are with respect to network ground terminal. - This value applies when the base-emitter resistance (Rgg) is equal to or less than 500 ohms. - Both halves of these dual circuits may conduct the rated current simultaneously. #### RECOMMENDED OPERATING CONDITIONS (See Note 4) | Characteristic | Symbol | Min | Nom | Max | Unit | |----------------|--------|------|-----|------|------| | Supply Voltage | vcc | 4.75 | 5.0 | 5.25 | Vdc | Note 4. The substrate, pin 8, must always be at the most negative device voltage for proper operation. #### ELECTRICAL CHARACTERISTICS (TA = 0 to +70°C unless otherwise noted.) | Characteristic | Symbol | Test Fig. | Min | Тур* | Max | Unit | |--|-----------------|-----------|------------------|------------------|------------------------|----------| | MTTL GATES | | | | | | | | High-Level Input Voltage | ViH | 1 | 2.0 | - | - | Vdc | | Low-Level Input Voltage | VIL | 2 | | - | 0.8 | Vdc | | High-Level Output Voltage
(V _{CC} = 4.5 V, V _I L = 0.8 V, I _{OH} = -400 μA) | Voн | 2 | 2.4 | 3.3 | _ | Vdc | | Low-Level Output Voltage (V_{CC} = 4.75 V, V_{IH} = 2.0 V, I_{OL} = 16 mA) | VoL | 1 | _ | 0.22 | 0.4 | Vdc | | High-Level Input Current (V _{CC} = 5.25 V, V _{in} = 2.4 V) Input A Input G (V _{CC} = 5.25 V, V _{in} = 5.5 V) Input A Input G | ЦН | 3 | -
-
-
- | _
_
_
_ | 40
80
1.0
2.0 | μA
mA | | Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V) | ήL | 4 | - | _
_ | -1.6
-3.2 | mA | | Short-Circuit Output Current** (V _{CC} = 5.25 V) | los | 5 | -18 | - | -55 | mA | | Supply Current High-Level Output (V _{CC} = 5.25 V, V _{in} = 0) Low-Level Output (V _{CC} = 5.25 V, V _{in} = 5.0 V) | ICCH
ICCL | 6 | _ | 2.0
6.0 | 4.0
11 | mA | | Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA) | V _{in} | 4 | - | - | -1.5 | V | #### **OUTPUT TRANSISTORS** | Characteristic | Symbol | Min | Тур | Max | Unit | |--|----------------------|----------------------|--------------|------------|------| | Collector-Base Breakdown Voltage
(I _C = 100 µA, I _E = 0) | VCBO | 35 | | | Vdc | | Collector-Emitter Breakdown Voltage
(I _C = 100 µA, R _{BE} = 500 ohms) | VCER | 30 | - | _ | Vdc | | Emitter-Base Breakdown Voltage
(I _E = 100 µA, I _C = 0) | VEBO | 5.0 | _ | _ | Vdc | | Static Forward Transfer Ratio (See Note 5)
(V _{CE} = 3.0 V, I _C = 100 mA, T _A = +25°C)
(V _{CE} = 3.0 V, I _C = 300 mA, T _A = +25°C)
(V _{CE} = 3.0 V, I _C = 100 mA, T _A = 0°C)
(V _{CE} = 3.0 V, I _C = 300 mA, T _A = 0°C) | μŁΕ | 25
30
20
25 | -
-
- | - | | | Base-Emitter Voltage (See Note 5)
(I _B = 10 mA, I _C = 100 mA)
(I _B = 30 mA, I _C = 300 mA) | VBE | - | 0.85
1.05 | 1.0
1.2 | Vdc | | Collector-Emitter Saturation Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _B = 30 mA, I _C = 300 mA) | V _{CE(sat)} | | 0.25
0.5 | 0.4
0.7 | Vdc | Note 5. These parameters must be measured using pulse techniques; t_W = 300 μ s, duty cycle \leq 2%. *All typical values at V_{CC} = 5.0 V, T_A = +25°C. **Not more than one output should be shorted at a time. #### SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = +25°C unless otherwise noted.) | Characteristic | Symbol | Test Fig. | Min | Тур | Max | Unit | |--|----------------|-----------|-----|-----|-----|------| | MTTL GATES | | | | | | | | Propagation Delay Time (C ₁ = 15 pF, R _L = 400 ohms) | | 7 | | | | ns | | Low-to-High-Level Output | l tPLH | | - | 14 | _ | | | High-to-Low-Level Output | TPHL | | _ | 6.0 | _ | | | OUTPUT TRANSISTORS # | | | | | | | | Switching Times ($I_C = 200 \text{ mA}$, $I_{B(1)} = 20 \text{ mA}$, $I_{B(2)} = -40 \text{ mA}$, $V_{BE(off)} = -1.0 \text{ V}$, $C_L = 15 \text{ pF}$, $R_L = 50 \text{ ohms}$) | | 8 | | | | ns | | Delay Time | td | | _ | 9.0 | _ | | | Rise Time | | | _ | 11 | _ | | | Storage Time | t _r | 1 | _ | 14 | _ | 1 | | Storage Time Fall Time | t _s | 1 | | 8.0 | | | | | tf | <u> </u> | L | | L | L | | GATES AND TRANSISTORS COMBINED # | | | | | | | | Propagation Delay Time (IC = 200 mA, CL = 15 pF, RL = 50 chms) | | 9 | 1 | | | ns | | Low-to-High-Level Output | tPLH | | - | 21 | - | ļ | | High-to-Low Level Output | †PHL | | - | 16 | - | | | Transition Time # (IC = 200 mA, C ₁ = 15 pF, R ₁ = 50 ohms) | 1 | 9 | | | | ns | | Low-to-High-Level Output | tTLH. | 1 | - | 7.0 | l – | 1 | | High-to-Low-Level Output | THL | 1 | . – | 8.0 | - | 1 | [&]quot;Voltage and current values are nominal; exact values vary slightly with transistors parameters. #### DC TEST CIRCUITS FOR MTTL GATES FIGURE 1 - VIH, VOL Both inputs are tested simultaneously. FIGURE 2 - VIL, VOH Each input is tested separately. (Arrows indicate actual direction of current flow. Current into a terminal is a positive value.) FIGURE 4 - I_{IL}, V_{in} FIGURE 3 - I_{IH} #### DC TEST CIRCUITS FOR MTTL GATES (continued) (Arrows indicate actual direction of current flow. Current into a terminal is a positive value.) FIGURE 7 - PROPAGATION DELAY TIMES, EACH GATE NOTES: A. The pulse generator has the following characteristics: $t_{\rm W}$ = 0.5 μ s, PRR = 1.0 MHz, $z_{\rm O}$ \approx 50 Ω . B. C_L includes probe and jig capacitance. #### VOLTAGE WAVEFORMS #### TEST CIRCUITS (continued) #### FIGURE 8 - SWITCHING TIMES, EACH TRANSISTOR NOTES: A. The pulse generator has the following characteristics: t_W = 0.3 μ s, duty cycle \leq 1%, z_0 \approx 50 Ω . B. C_L includes probe and jig capacitance. #### VOLTAGE WAVEFORMS #### FIGURE 9 - SWITCHING TIMES, GATE AND TRANSISTOR NOTES: A. The pulse generator has the following characteristics: $\tau_{\rm W}$ = 0.5 μ s, PRR = 1.0 MHz, $z_{\rm O}$ \approx 50 Ω . B. C_L includes probe and jig capacitance. #### VOLTAGE WAVEFORMS