

MC75450

DUAL PERIPHERAL POSITIVE "AND" DRIVER

The MC75450 is a versatile device designed for use as a generalpurpose dual interface circuit in MDTL and MTTL type systems. This device features two standard MTTL gates and two noncommitted, high-current, high-voltage NPN transistors. Typical applications include relay and lamp drivers, power drivers, MOS and memory drivers.

- MDTL and MTTL Compatibility
- 300 mA Output Current Drive Capability (each transistor)
- Separate Gate and Output Transistor for Maximum Design Flexibility
- High Output Breakdown Voltage:
 VCER = 30 Volts minimum

DUAL PERIPHERAL POSITIVE "AND" DRIVER

SILICON MONOLITHIC INTEGRATED CIRCUITS

MAXIMUM RATINGS (T_A = 0 to +70°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage (See Note 1)	Vcc	+7.0	Vdc
Input Voltage (See Note 1)	Vin	5.5	Vdc
V _{CC} -to-Substrate Voltage		35	Vdc
Collector-to-Substrate Voltage		35	Vdc
Collector-Base Voltage	Vcв	35	Vdc
Collector-Emitter Voltage (See Note 2)	VCE	30	Vdc
Emitter-Base Voltage	VEB	5.0	Vdc
Collector Current (continuous) (See Note 3)		300	mA
Power Dissipation (Package Limitation) Plastic and Ceramic Dual In-Line Packages Derate above T _A = +25°C	PD	830 6.6	mW mW/ ^o C
Operating Temperature Range	TA	0 to +70	°င
Storage Temperature Range	T _{stg}	-65 to +150	°c

NOTES: 1. Voltage values are with respect to network ground terminal.

- This value applies when the base-emitter resistance (Rgg) is equal to or less than 500 ohms.
- Both halves of these dual circuits may conduct the rated current simultaneously.

RECOMMENDED OPERATING CONDITIONS (See Note 4)

Characteristic	Symbol	Min	Nom	Max	Unit
Supply Voltage	vcc	4.75	5.0	5.25	Vdc

Note 4. The substrate, pin 8, must always be at the most negative device voltage for proper operation.

ELECTRICAL CHARACTERISTICS (TA = 0 to +70°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур*	Max	Unit
MTTL GATES						
High-Level Input Voltage	ViH	1	2.0	-	-	Vdc
Low-Level Input Voltage	VIL	2		-	0.8	Vdc
High-Level Output Voltage (V _{CC} = 4.5 V, V _I L = 0.8 V, I _{OH} = -400 μA)	Voн	2	2.4	3.3	_	Vdc
Low-Level Output Voltage (V_{CC} = 4.75 V, V_{IH} = 2.0 V, I_{OL} = 16 mA)	VoL	1	_	0.22	0.4	Vdc
High-Level Input Current (V _{CC} = 5.25 V, V _{in} = 2.4 V) Input A Input G (V _{CC} = 5.25 V, V _{in} = 5.5 V) Input A Input G	ЦН	3	- - - -	_ _ _ _	40 80 1.0 2.0	μA mA
Low-Level Input Current (V _{CC} = 5.25 V, V _{in} = 0.4 V)	ήL	4	-	_ _	-1.6 -3.2	mA
Short-Circuit Output Current** (V _{CC} = 5.25 V)	los	5	-18	-	-55	mA
Supply Current High-Level Output (V _{CC} = 5.25 V, V _{in} = 0) Low-Level Output (V _{CC} = 5.25 V, V _{in} = 5.0 V)	ICCH ICCL	6	_	2.0 6.0	4.0 11	mA
Input Clamp Voltage (V _{CC} = 4.75 V, I _{in} = -12 mA)	V _{in}	4	-	-	-1.5	V

OUTPUT TRANSISTORS

Characteristic	Symbol	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage (I _C = 100 µA, I _E = 0)	VCBO	35			Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 µA, R _{BE} = 500 ohms)	VCER	30	-	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 µA, I _C = 0)	VEBO	5.0	_	_	Vdc
Static Forward Transfer Ratio (See Note 5) (V _{CE} = 3.0 V, I _C = 100 mA, T _A = +25°C) (V _{CE} = 3.0 V, I _C = 300 mA, T _A = +25°C) (V _{CE} = 3.0 V, I _C = 100 mA, T _A = 0°C) (V _{CE} = 3.0 V, I _C = 300 mA, T _A = 0°C)	μŁΕ	25 30 20 25	- - -	-	
Base-Emitter Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _B = 30 mA, I _C = 300 mA)	VBE	-	0.85 1.05	1.0 1.2	Vdc
Collector-Emitter Saturation Voltage (See Note 5) (I _B = 10 mA, I _C = 100 mA) (I _B = 30 mA, I _C = 300 mA)	V _{CE(sat)}		0.25 0.5	0.4 0.7	Vdc

Note 5. These parameters must be measured using pulse techniques; t_W = 300 μ s, duty cycle \leq 2%. *All typical values at V_{CC} = 5.0 V, T_A = +25°C. **Not more than one output should be shorted at a time.

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = +25°C unless otherwise noted.)

Characteristic	Symbol	Test Fig.	Min	Тур	Max	Unit
MTTL GATES						
Propagation Delay Time (C ₁ = 15 pF, R _L = 400 ohms)		7				ns
Low-to-High-Level Output	l tPLH		-	14	_	
High-to-Low-Level Output	TPHL		_	6.0	_	
OUTPUT TRANSISTORS #						
Switching Times ($I_C = 200 \text{ mA}$, $I_{B(1)} = 20 \text{ mA}$, $I_{B(2)} = -40 \text{ mA}$, $V_{BE(off)} = -1.0 \text{ V}$, $C_L = 15 \text{ pF}$, $R_L = 50 \text{ ohms}$)		8				ns
Delay Time	td		_	9.0	_	
Rise Time			_	11	_	
Storage Time	t _r	1	_	14	_	1
Storage Time Fall Time	t _s	1		8.0		
	tf	<u> </u>	L		L	L
GATES AND TRANSISTORS COMBINED #						
Propagation Delay Time (IC = 200 mA, CL = 15 pF, RL = 50 chms)		9	1			ns
Low-to-High-Level Output	tPLH		-	21	-	ļ
High-to-Low Level Output	†PHL		-	16	-	
Transition Time # (IC = 200 mA, C ₁ = 15 pF, R ₁ = 50 ohms)	1	9				ns
Low-to-High-Level Output	tTLH.	1	-	7.0	l –	1
High-to-Low-Level Output	THL	1	. –	8.0	-	1

[&]quot;Voltage and current values are nominal; exact values vary slightly with transistors parameters.

DC TEST CIRCUITS FOR MTTL GATES

FIGURE 1 - VIH, VOL

Both inputs are tested simultaneously.

FIGURE 2 - VIL, VOH

Each input is tested separately.

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 4 - I_{IL}, V_{in} FIGURE 3 - I_{IH}

DC TEST CIRCUITS FOR MTTL GATES (continued)

(Arrows indicate actual direction of current flow. Current into a terminal is a positive value.)

FIGURE 7 - PROPAGATION DELAY TIMES, EACH GATE

NOTES: A. The pulse generator has the following characteristics: $t_{\rm W}$ = 0.5 μ s, PRR = 1.0 MHz, $z_{\rm O}$ \approx 50 Ω . B. C_L includes probe and jig capacitance.

VOLTAGE WAVEFORMS

TEST CIRCUITS (continued)

FIGURE 8 - SWITCHING TIMES, EACH TRANSISTOR

NOTES: A. The pulse generator has the following characteristics: t_W = 0.3 μ s, duty cycle \leq 1%, z_0 \approx 50 Ω . B. C_L includes probe and jig capacitance.

VOLTAGE WAVEFORMS

FIGURE 9 - SWITCHING TIMES, GATE AND TRANSISTOR

NOTES: A. The pulse generator has the following characteristics: $\tau_{\rm W}$ = 0.5 μ s, PRR = 1.0 MHz, $z_{\rm O}$ \approx 50 Ω . B. C_L includes probe and jig capacitance.

VOLTAGE WAVEFORMS

