

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Data Sheet

High-Performance, 16-bit Digital Signal Controllers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

High-Performance, 16-bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance DSC CPU:

- · Modified Harvard architecture
- · C compiler optimized instruction set
- · 16-bit wide data path
- · 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- Linear data memory addressing up to 64 Kbytes
- · 83 base instructions: mostly 1 word/1 cycle
- Two 40-bit accumulators with rounding and saturation options
- Flexible and powerful addressing modes:
 - Indirect
 - Modulo
 - Bit-Reversed
- · Software stack
- 16 x 16 fractional/integer multiply operations
- · 32/16 and 16/16 divide operations
- · Single-cycle multiply and accumulate:
 - Accumulator write back for DSP operations
 - Dual data fetch
- · Up to ±16-bit shifts for up to 40-bit data

Direct Memory Access (DMA):

- · 8-channel hardware DMA
- Up to 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- · Most peripherals support DMA

Timers/Capture/Compare/PWM:

- Timer/Counters, up to five 16-bit timers:
 - Can pair up to make two 32-bit timers
 - One timer runs as a Real-Time Clock with an external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to four channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- · Output Compare (up to four channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
- Hardware Real-Time Clock/Calendar (RTCC):
 - Provides clock, calendar, and alarm functions

Interrupt Controller:

- · 5-cycle latency
- · 118 interrupt vectors
- · Up to 49 available interrupt sources
- · Up to three external interrupts
- Seven programmable priority levels
- · Five processor exceptions

Digital I/O:

- · Peripheral pin Select functionality
- Up to 35 programmable digital I/O pins
- Wake-up/Interrupt-on-Change for up to 21 pins
- · Output pins can drive from 3.0V to 3.6V
- Up to 5V output with open drain configuration
- · All digital input pins are 5V tolerant
- · 4 mA sink on all I/O pins

On-Chip Flash and SRAM:

- Flash program memory (up to 128 Kbytes)
- Data SRAM (up to 16 Kbytes)
- Boot, Secure, and General Security for program Flash

System Management:

- · Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low jitter PLL
- · Power-up Timer
- · Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- · On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep, and Doze modes with fast wake-up

Analog-to-Digital Converters (ADCs):

- 10-bit, 1.1 Msps or 12-bit, 500 Ksps conversion:
 - Two and four simultaneous samples (10-bit ADC)
 - Up to 13 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Conversion possible in Sleep mode
 - ±2 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity

Audio Digital-to-Analog Converter (DAC):

- · 16-bit Dual Channel DAC module
- · 100 Ksps maximum sampling rate
- · Second-Order Digital Delta-Sigma Modulator

Data Converter Interface (DCI) module:

- · Codec interface
- Supports I²S and AC'97 protocols
- · Up to 16-bit data words, up to 16 words per frame
- · 4-word deep TX and RX buffers

Comparator Module:

Two analog comparators with programmable input/output configuration

CMOS Flash Technology:

- · Low-power, high-speed Flash technology
- · Fully static design
- 3.3V (±10%) operating voltage
- Industrial and Extended temperature
- · Low power consumption

Communication Modules:

- · 4-wire SPI (up to two modules):
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C™:
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- · UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA® encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN™ module) 2.0B active:
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All
 - Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet™ addressing support
- · Parallel Master Slave Port (PMP/EPSP):
 - Supports 8-bit or 16-bit data
 - Supports 16 address lines
- Programmable Cyclic Redundancy Check (CRC):
 - Programmable bit length for the CRC generator polynomial (up to 16-bit length)
 - 8-deep, 16-bit or 16-deep, 8-bit FIFO for data input

Packaging:

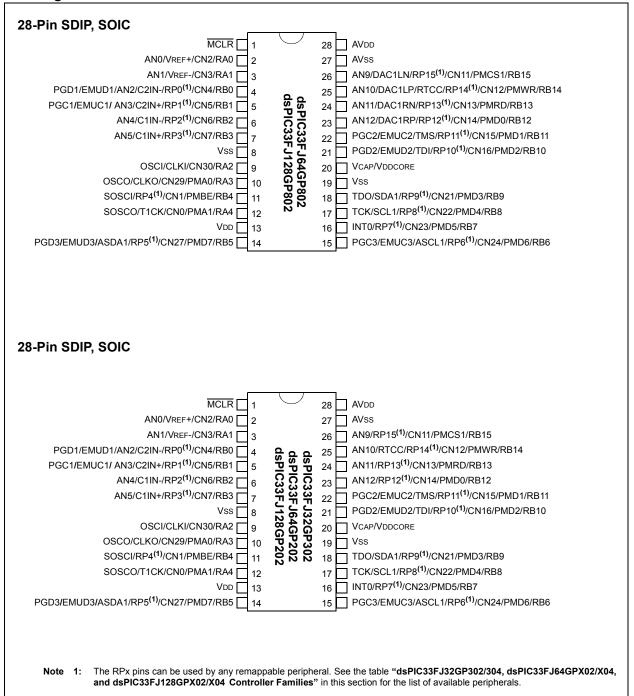
- 28-pin SDIP/SOIC/QFN-S
- 44-pin TQFP/QFN

Note: See the device variant tables for exact peripheral features per device.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes, and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

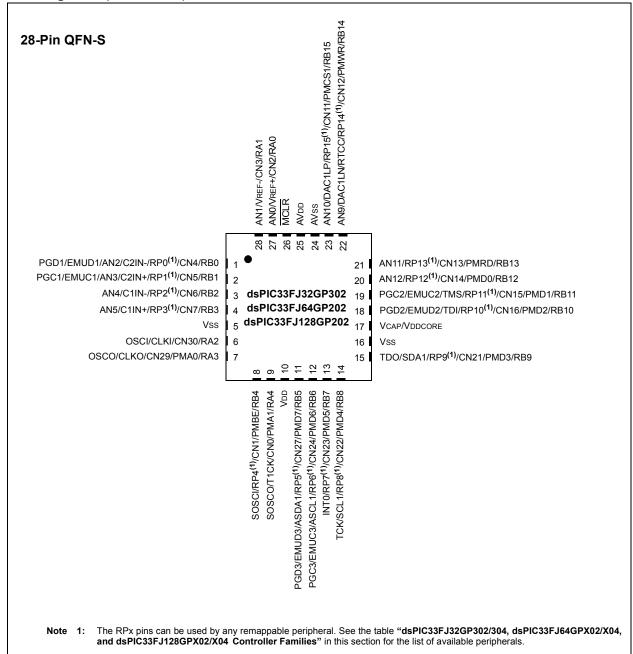
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Controller Families

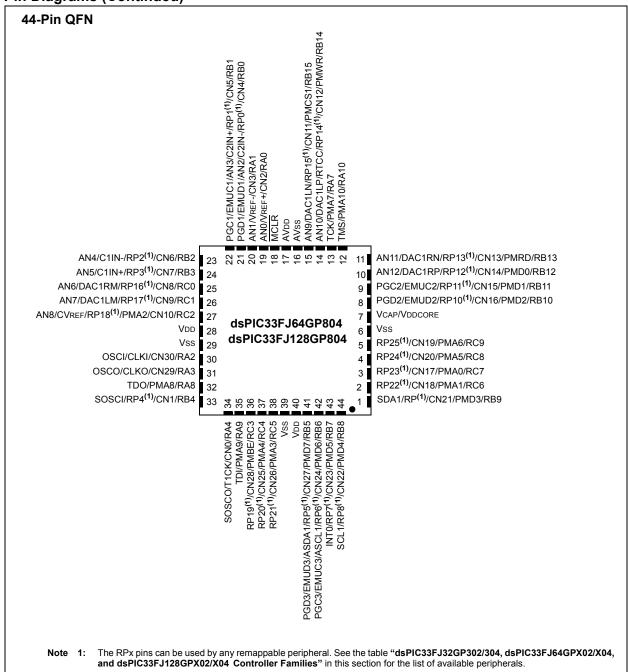

						Rem	appabl	e Peri	phera	al								ĵ.			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Data Converter Interface	UART	IdS	m_ ECAN ™	External Interrupts ⁽³⁾	RTCC	12С™	CRC Generator	10-bit/12-bit ADC (Channels)	16-bit Audio DAC (Pins)	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	suid O/I	Packages
dsPIC33FJ128GP804	44	128	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ128GP802	28	128	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ128GP204	44	128	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ128GP202	28	128	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ64GP804	44	64	16	26	5	4	4	1	2	2	1	3	1	1	1	13	6	1/1	11	35	QFN TQFP
dsPIC33FJ64GP802	28	64	16	16	5	4	4	1	2	2	1	3	1	1	1	10	4	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ64GP204	44	64	8	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ64GP202	28	64	8	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SDIP SOIC QFN-S
dsPIC33FJ32GP304	44	32	4	26	5	4	4	1	2	2	0	3	1	1	1	13	0	1/1	11	35	QFN TQFP
dsPIC33FJ32GP302	28	32	4	16	5	4	4	1	2	2	0	3	1	1	1	10	0	1/0	2	21	SDIP SOIC QFN-S

Note 1: RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32GP302/304, which include 1 Kbyte of DMA RAM.

^{2:} Only four out of five timers are remappable.

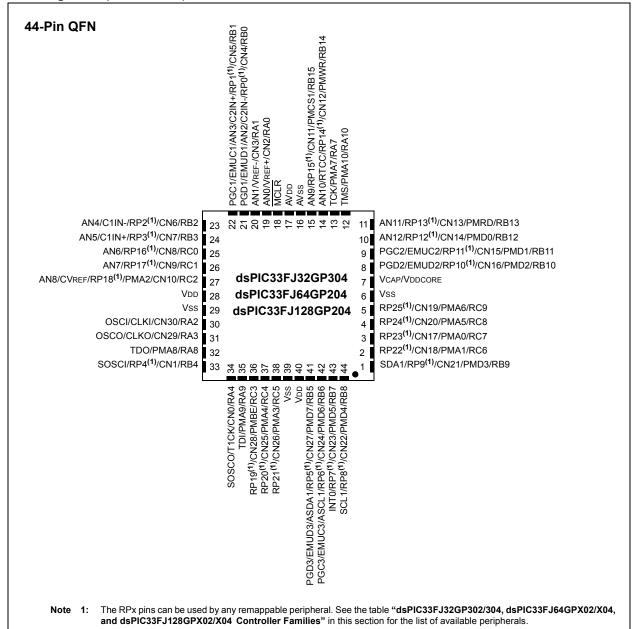
^{3:} Only two out of three interrupts are remappable.


Pin Diagrams

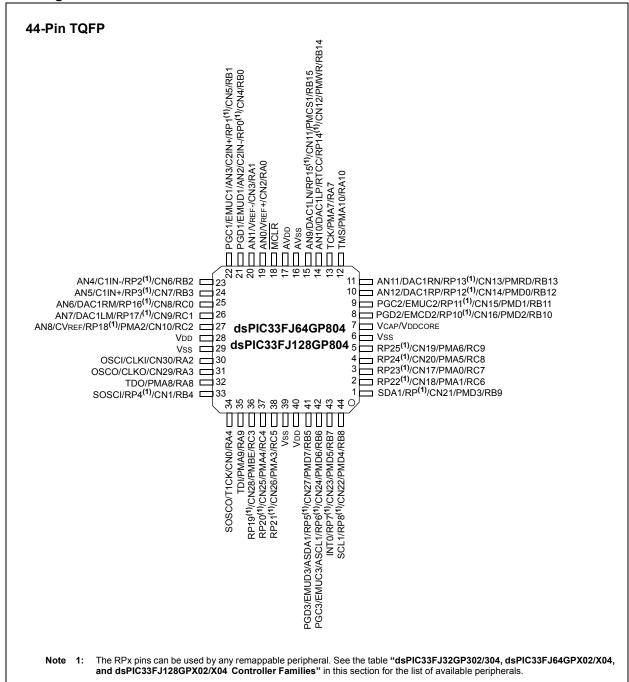

Pin Diagrams (Continued) AN9/DAC1LN/RTCC/RP14(1)/CN12/PMWR/RB14 28-Pin QFN-S AN10/DAC1LP/RP15(1)/CN11/PMCS1/RB15 AN0/VREF+/CN2/RA0 AN1/VREF-/CN3/RA1 MCLR AVDD AVSS 28 27 26 25 25 24 23 22 22 PGD1/EMUD1/AN2/C2IN-/RP0⁽¹⁾/CN4/RB0 AN11/DAC1RN/RP13⁽¹⁾/CN13/PMRD/RB13 PGC1/EMUC1/AN3/C2IN+/RP1⁽¹⁾/CN5/RB1 AN12/DAC1RP/RP12⁽¹⁾/CN14/PMD0/RB12 20 AN4/C1IN-/RP2⁽¹⁾/CN6/RB2 PGC2/EMUC2/TMS/RP11⁽¹⁾/CN15/PMD1/RB11 dsPIC33FJ64GP802 19 AN5/C1IN+/RP3⁽¹⁾/CN7/RB3 PGD2/EMUD2/TDI/RP10⁽¹⁾/CN16/PMD2/RB10 dsPIC33FJ128GP802 18 VCAP/VDDCORE 17 OSCI/CLKI/CN30/RA2 16 OSCO/CLKO/CN29/PMA0/RA3 TDO/SDA1/RP9(1)/CN21/PMD3/RB9 15 ± 5 5 PGC3/EMUC3/ASCL1/RP6(1)/CN24/PMD6/RB6 SOSCI/RP4(1)/CN1/PMBE/RB4 SOSCO/T1CK/CN0/PMA1/RA4 PGD3/EMUD3/ASDA1/RP5(1)/CN27/PMD7/RB5 TCK/SCL1/RP8(1)/CN22/PMD4/RB8 The RPx pins can be used by any remappable peripheral. See the table "dsPlC33FJ32GP302/304, dsPlC33FJ64GPX02/X04, and dsPlC33FJ128GPX02/X04 Controller Families" in this section for the list of available peripherals.

Preliminary © 2008 Microchip Technology Inc. DS70292B-page 5

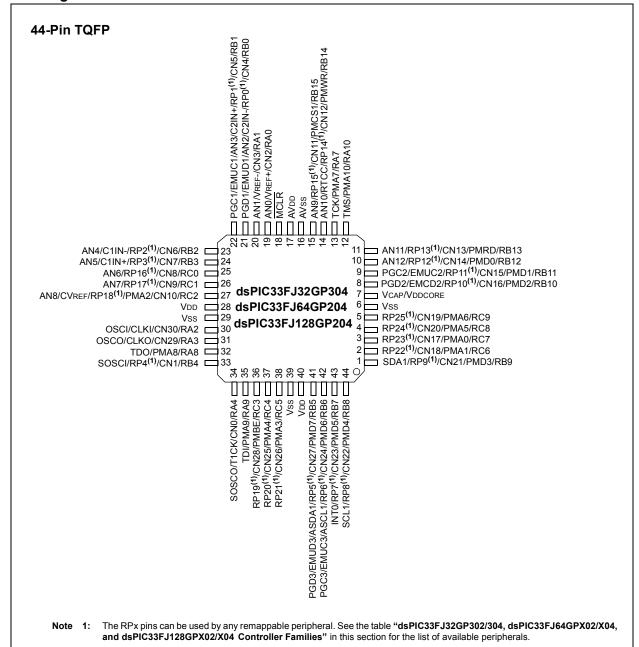
Pin Diagrams (Continued)



Pin Diagrams (Continued)



© 2008 Microchip Technology Inc. Preliminary DS70292B-page 7


Pin Diagrams (Continued)

Pin Diagram

Pin Diagram

Table of Contents

dsPl	C33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Product Families	3
1.0	Device Overview	13
2.0	CPU	
3.0	Memory Organization	29
4.0	Flash Program Memory	63
5.0	Resets	69
6.0	Interrupt Controller	77
7.0	Direct Memory Access (DMA)	119
8.0	Oscillator Configuration	131
9.0	Power-Saving Features	143
10.0	I/O Ports	145
11.0	Timer1	175
12.0	Timer2/3 And TImer4/5 feature	177
13.0	Input Capture	183
14.0	Output Compare	185
15.0	Serial Peripheral Interface (SPI)	189
16.0	Inter-Integrated Circuit (I ² C™)	195
17.0	Universal Asynchronous Receiver Transmitter (UART)	203
18.0	Enhanced CAN (ECAN™) Module	209
19.0	Data Converter Interface (DCI) Module	235
	10-bit/12-bit Analog-to-Digital Converter (ADC1)	
21.0	Audio Digital-to-Analog Converter (DAC)	253
22.0	Comparator Module	259
23.0	Real-Time Clock and Calendar (RTCC)	265
	Programmable Cyclic Redundancy Check (CRC) Generator	
25.0	Parallel Master Port (PMP)	279
26.0	Special Features	287
27.0	Instruction Set Summary	297
28.0	Development Support	305
29.0	Electrical Characteristics	309
30.0	Packaging Information	355
Appe	endix A: Revision History	365
Index	x	367
The I	Microchip Web Site	373
Custo	omer Change Notification Service	373
Custo	omer Support	373
Read	der Response	374
Prod	uct Identification System	375

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.0 **DEVICE OVERVIEW**

Note: This data sheet summarizes the features dsPIC33FJ64GPX02/X04,

dsPIC33FJ32GP302/304, dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the dsPIC33F Family Reference Manual, which is available from the Microchip website (www.microchip.com)

This document contains device specific information for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Digital Signal Controller (DSC) Devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high performance microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the peripheral modules and dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

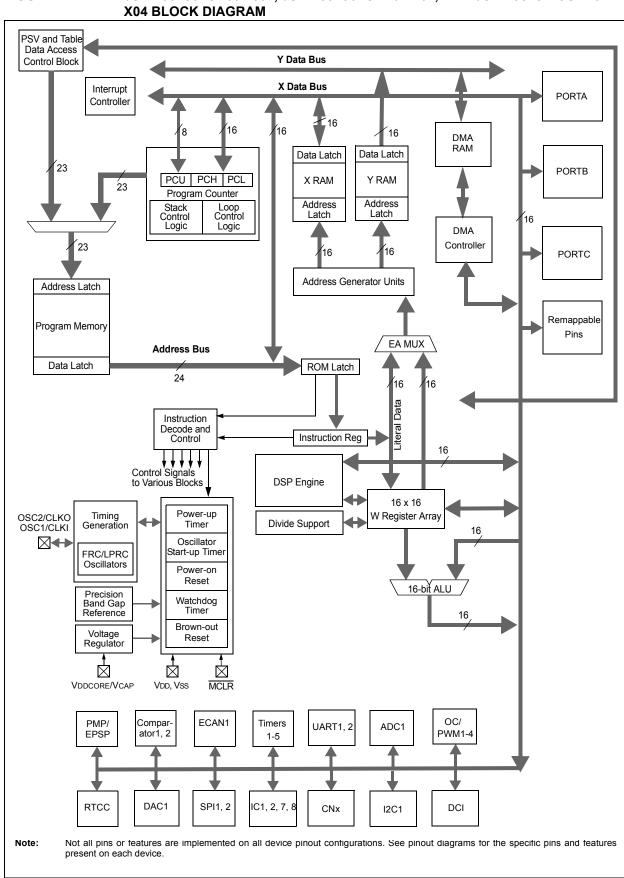


FIGURE 1-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/

TABLE 1-1: PINOUT I/O DESCRIPTIONS

IABLE 1-1:	1 111001	I/O DESC	O DESCRIPTIONS		
Pin Name	Pin Type	Buffer Type	Description		
AN0-AN12	I	Analog	Analog input channels.		
CLKI	O	ST/CMOS	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.		
OSC1 OSC2	I I/O	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.		
SOSCI SOSCO	0	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.		
CN0-CN30	I	ST	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.		
IC1-IC2 IC7-IC8		ST ST	Capture inputs 1/2 Capture inputs 7/8.		
OCFA OC1-OC4	I О	ST —	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare outputs 1 through 4.		
INT0 INT1 INT2		ST ST ST	External interrupt 0. External interrupt 1. External interrupt 2.		
RA0-RA4 RA7-RA10	I/O I/O	ST ST	PORTA is a bidirectional I/O port. PORTA is a bidirectional I/O port.		
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.		
RC0-RC9	I/O	ST	PORTC is a bidirectional I/O port.		
T1CK T2CK T3CK T4CK T5CK		ST ST ST ST ST	Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input.		
U1CTS U1RTS U1RX U1TX		ST — ST —	UART1 clear to send. UART1 ready to send. UART1 receive. UART1 transmit.		
U2CTS U2RTS U2RX U2TX		ST — ST —	UART2 clear to send. UART2 ready to send. UART2 receive. UART2 transmit.		
SCK1 SDI1 SDO1 SS1	I/O I O I/O	ST ST — ST	Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O.		
SCK2 SDI2 SDO2 SS2	I/O I O I/O	ST ST — ST	Synchronous serial clock input/output for SPI2. SPI2 data in. SPI2 data out. SPI2 slave synchronization or frame pulse I/O.		
SCL1 SDA1 ASCL1 ASDA1	I/O I/O I/O I/O	ST ST ST ST	Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Alternate synchronous serial clock input/output for I2C1. Alternate synchronous serial data input/output for I2C1.		

Legend: CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output P = Power I = Input

TTL = TTL input buffer

PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-1:**

IABLE 1-1:	PINOUI	I/O DESC	RIPTIONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	Description
TMS	I	ST	JTAG Test mode select pin.
TCK	Į.	ST	JTAG test clock input pin.
TDI TDO		ST	JTAG test data input pin.
	0	_	JTAG test data output pin.
C1RX	I	ST	ECAN1 bus receive pin.
C1TX	0	_	ECAN1 bus transmit pin.
RTCC	0	_	Real-Time Clock Alarm Output.
CVREF	0	ANA	Comparator Voltage Reference Output.
C1IN-	I	ANA	Comparator 1 Negative Input.
C1IN+		ANA	Comparator 1 Positive Input.
C10UT	0	_	Comparator 1 Output.
C2IN-	l I	ANA	Comparator 2 Negative Input.
C2IN+		ANA	Comparator 2 Positive Input.
C2OUT	0		Comparator 2 Output.
PMA0	I/O	TTL/ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	I/O	TTL/ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2 -PMPA10	0	_	Parallel Master Port Address (Demultiplexed Master Modes).
PMBE PMCS1	0		Parallel Master Port Byte Enable Strobe.
PMCS1 PMD0-PMPD7	1/0	TTL/ST	Parallel Master Port Chip Select 1 Strobe. Parallel Master Port Data (Demultiplexed Master mode) or Address/Data
	1/0	1112/01	(Multiplexed Master modes).
PMRD	0		Parallel Master Port Read Strobe.
PMWR	0	_	Parallel Master Port Write Strobe.
DAC1RN	0	_	DAC1 Right Channel Negative Output.
DAC1RP	0	_	DAC1 Right Channel Positive Output.
DAC1RM	0	_	DAC1 Right Channel Middle Point Value (typically 1.65V).
DAC1LN	0	_	DAC1 Left Channel Negative Output.
DAC1LP	0	_	DAC1 Left Channel Positive Output.
DAC1LM	0	_	DAC1 Left Channel Middle Point Value (typically 1.65V).
COFS	I/O	ST	Data Converter Interface frame synchronization pin.
CSCK	I/O	ST	Data Converter Interface serial clock input/output pin.
CSDI	I	ST	Data Converter Interface serial data input pin
CSDO	0	_	Data Converter Interface serial data output pin.
PGD1/EMUD1	I/O	ST	Data I/O pin for programming/debugging communication channel 1.
PGC1/EMUC1	I	ST	Clock input pin for programming/debugging communication channel 1.
PGD2/EMUD2	I/O	ST	Data I/O pin for programming/debugging communication channel 2.
PGC2/EMUC2	1	ST	Clock input pin for programming/debugging communication channel 2.
PGD3/EMUD3	I/O	ST	Data I/O pin for programming/debugging communication channel 3.
PGC3/EMUC3	I	ST	Clock input pin for programming/debugging communication channel 3.
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	Positive supply for analog modules.
AVss	Р	Р	Ground reference for analog modules.
VDD	Р	_	Positive supply for peripheral logic and I/O pins.
VDDCORE	Р	_	CPU logic filter capacitor connection.
Vss	Р	_	Ground reference for logic and I/O pins.
VREF+	I	Analog	Analog voltage reference (high) input.
VREF-	I	Analog	Analog voltage reference (low) input.
l	<u> </u>	·	

Legend: CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels
TTL = TTL input buffer

Analog = Analog input

P = Power

O = Output

I = Input

2.0 CPU

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 2. CPU" (DS70204), which is available from the Microchip website (www.microchip.com).

2.1 Overview

The dsPIC33FJ32GP302/304. dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle. with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any time.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 2-1, and the programmer's model for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 is shown in Figure 2-2.

2.2 Data Addressing Overview

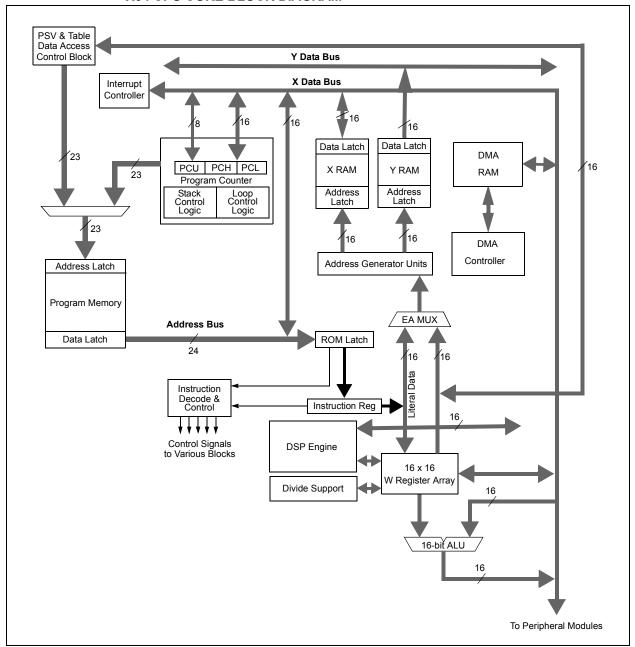
The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

2.3 DSP Engine Overview

The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.


2.4 Special MCU Features

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 2-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 CPU CORE BLOCK DIAGRAM

X04 PROGRAMMER'S MODEL D15 D0 W0/WREG PUSH.S Shadow W1 DO Shadow W2 W3 Legend W4 **DSP** Operand W5 Registers W6 W7 Working Registers W8 W9 **DSP Address** W10 Registers W11 W12/DSP Offset W13/DSP Write Back W14/Frame Pointer W15/Stack Pointer **SPLIM** Stack Pointer Limit Register AD39 AD15 AD31 AD0 ACCA DSP Accumulators **ACCB** PC0 0 **Program Counter** 0 **TBLPAG** Data Table Page Address **PSVPAG** Program Space Visibility Page Address RCOUNT REPEAT Loop Counter **DCOUNT** DO Loop Counter 22 **DOSTART** DO Loop Start Address 22 **DOEND** DO Loop End Address 15 CORCON Core Configuration Register ОВ SB OAB SAB DA DC IPL2 IPL1 IPL0 Ζ OA SA RA Ν OV С STATUS Register SRH

FIGURE 2-2: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/

2.5 CPU Control Registers

REGISTER 2-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	ОВ	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit 0

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 OA: Accumulator A Overflow Status bit

1 = Accumulator A overflowed

0 = Accumulator A has not overflowed

bit 14 **OB:** Accumulator B Overflow Status bit

1 = Accumulator B overflowed

0 = Accumulator B has not overflowed

bit 13 SA: Accumulator A Saturation 'Sticky' Status bit (1)

1 = Accumulator A is saturated or has been saturated at some time

0 = Accumulator A is not saturated

bit 12 SB: Accumulator B Saturation 'Sticky' Status bit⁽¹⁾

1 = Accumulator B is saturated or has been saturated at some time

0 = Accumulator B is not saturated

bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit

1 = Accumulators A or B have overflowed

0 = Neither Accumulators A or B have overflowed

bit 10 SAB: SA || SB Combined Accumulator (Sticky) Status bit (4)

1 = Accumulators A or B are saturated or have been saturated at some time in the past

0 = Neither Accumulator A or B are saturated

bit 9 DA: DO Loop Active bit

1 = DO loop in progress

0 = DO loop not in progress

bit 8 **DC:** MCU ALU Half Carry/Borrow bit

1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred

0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred

Note 1: This bit can be read or cleared (not set).

2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

REGISTER 2-1: SR: CPU STATUS REGISTER (CONTINUED)

IPL<2:0>: CPU Interrupt Priority Level Status bits(2) bit 7-5 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (two's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 1 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)

- C: MCU ALU Carry/Borrow bit
- 1 = A carry-out from the Most Significant bit of the result occurred
- 0 = No carry-out from the Most Significant bit of the result occurred
- Note 1: This bit can be read or cleared (not set).

bit 0

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
- 4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

REGISTER 2-2: CORCON: CORE CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	_	_	US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit, read	as '0'

bit 15-13 **Unimplemented:** Read as '0'

bit 12 US: DSP Multiply Unsigned/Signed Control bit

1 = DSP engine multiplies are unsigned

0 = DSP engine multiplies are signed

bit 11 **EDT**: Early DO Loop Termination Control bit⁽¹⁾

1 = Terminate executing DO loop at end of current loop iteration

0 = No effect

bit 10-8 **DL<2:0>:** DO Loop Nesting Level Status bits

111 = 7 DO loops active

•

001 = 1 DO loop active 000 = 0 DO loops active

bit 7 SATA: ACCA Saturation Enable bit

1 = Accumulator A saturation enabled 0 = Accumulator A saturation disabled

bit 6 SATB: ACCB Saturation Enable bit

1 = Accumulator B saturation enabled0 = Accumulator B saturation disabled

bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit

1 = Data space write saturation enabled0 = Data space write saturation disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit

1 = 9.31 saturation (super saturation)0 = 1.31 saturation (normal saturation)

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

bit 2 PSV: Program Space Visibility in Data Space Enable bit

1 = Program space visible in data space0 = Program space not visible in data space

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER 2-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 1 RND: Rounding Mode Select bit

1 = Biased (conventional) rounding enabled0 = Unbiased (convergent) rounding enabled

1 = Integer mode enabled for DSP multiply ops

0 = Fractional mode enabled for DSP multiply ops

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

2.6 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "dsPIC30F/33F Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

2.6.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

2.6.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

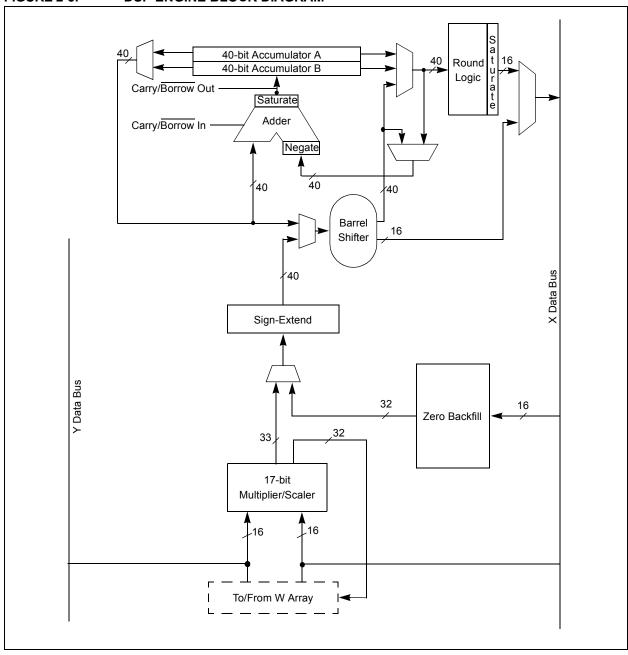
2.7 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:


- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 2-3.

TABLE 2-1: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	A = (x - y)2	No
EDAC	A = A + (x - y)2	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	$A = x \cdot y$	No
MPY	A = x 2	No
MPY.N	$A = -x \cdot y$	No
MSC	$A = A - x \bullet y$	Yes

FIGURE 2-3: DSP ENGINE BLOCK DIAGRAM

2.7.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1}-1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1-2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10^{-10} .

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands direct a 16-bit result, and word operands direct a 32-bit result to the specified registers in the W array.

2.7.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

2.7.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B>(CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate

Six STATUS register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

SB: ACCB saturated (bit 31 overflow and saturation)

or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- · OAB: Logical OR of OA and OB
- · SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 6.0 "Interrupt Controller"**). This allows the user application to take immediate action, for example, to correct system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and is saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, the SA and SB bits generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

- Bit 39 Overflow and Saturation:
 When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFFF) or maximally negative 9.31 value (0x8000000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).
- Bit 31 Overflow and Saturation:
 When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow:
 The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

2.7.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct:
 The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

2.7.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- · If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see Section 2.7.3.2 "Data Space Write Saturation"). For the MAC class of instructions, the accumulator write-back operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

2.7.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

2.7.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

3.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 4. Program Memory" (DS70202), which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

3.1 Program Address Space

The program address memory space of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in **Section 3.6** "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

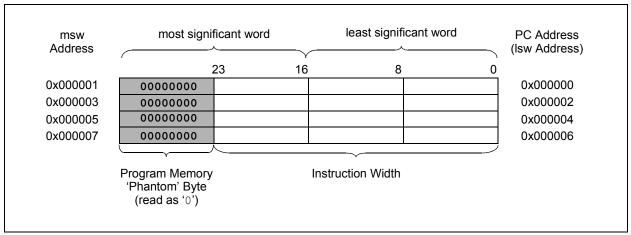
The memory map for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices is shown in Figure 3-1.

FIGURE 3-1: PROGRAM MEMORY MAP FOR dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 DEVICES

_	dsPIC33FJ32GP302/304	dsPIC33FJ64GPX02/X04	dsPIC33FJ128GPX02/X04
A	GOTO Instruction Reset Address	GOTO Instruction Reset Address	GOTO Instruction 0x000000 0x000002
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table 0x000004
	Reserved	Reserved	0x0000FE 0x000100
	Alternate Vector Table	Alternate Vector Table	0x000104
	<u> </u>	Tritemate vector rable	Alternate vector Table
	User Program Flash Memory (11264 instructions)	User Program Flash Memory (22016 instructions)	0x0057FE 0x005800
			User Program Flash Memory (44032 instructions)
	Unimplemented (Read '0's)	Unimplemented (Read '0's)	0x0157FE 0x015800
			Unimplemented (Read '0's) 0x7FFFFE
	Reserved	Reserved	0x800000
	Device Configuration Registers	Device Configuration Registers	0xF7FFFE
	Reserved	Reserved	0xF80018 Reserved
	DEVID (2)	DEVID (2)	0xFEFFFE 0xFF0000 0xFF0002
↓	Reserved	Reserved	Reserved 0xFFFFFE

3.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 3-2).


Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

3.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 6.1** "Interrupt Vector **Table**".

FIGURE 3-2: PROGRAM MEMORY ORGANIZATION

3.2 Data Address Space

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 3-4.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 3.6.3 "Reading Data From Program Memory Using Program Space Visibility").

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices implement up to 16 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte is returned.

3.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

3.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC® MCU devices and improve data space memory usage efficiency, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

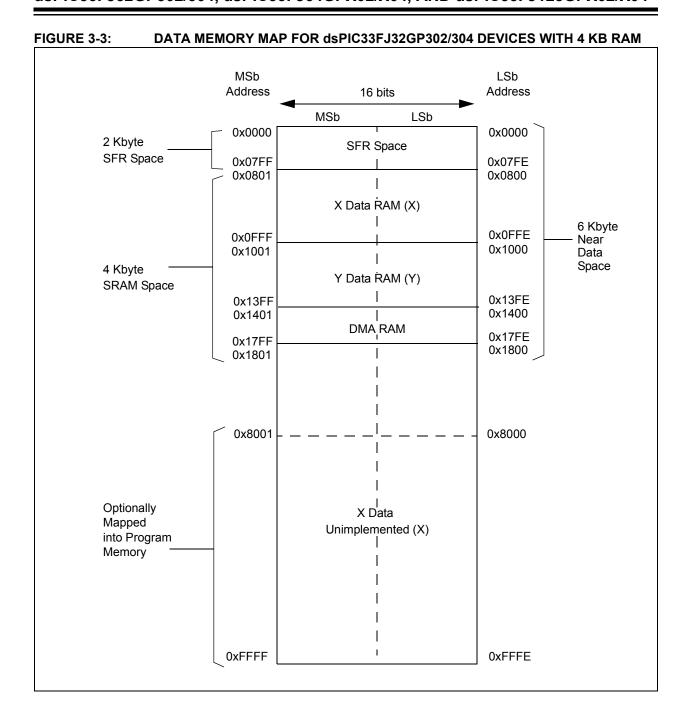
A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

3.2.3 SFR SPACE


The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

3.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an address pointer.

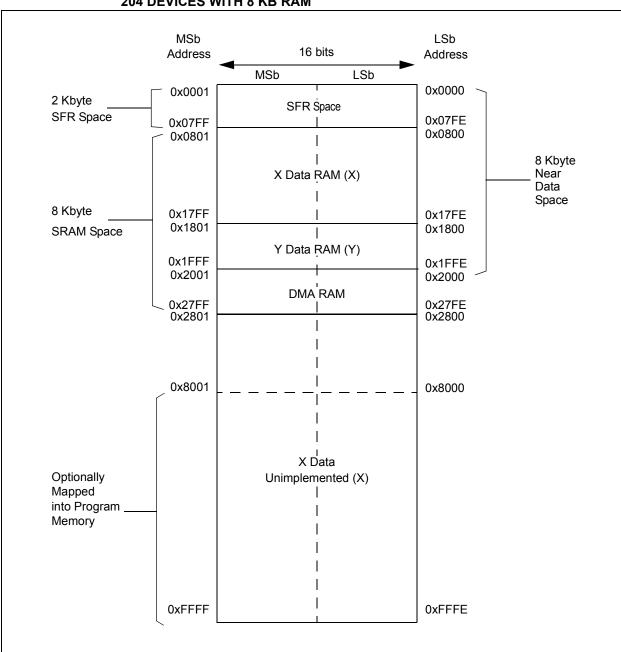


FIGURE 3-4: DATA MEMORY MAP FOR dsPIC33FJ128GP202/204 AND dsPIC33FJ64GP202/204 DEVICES WITH 8 KB RAM

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 33

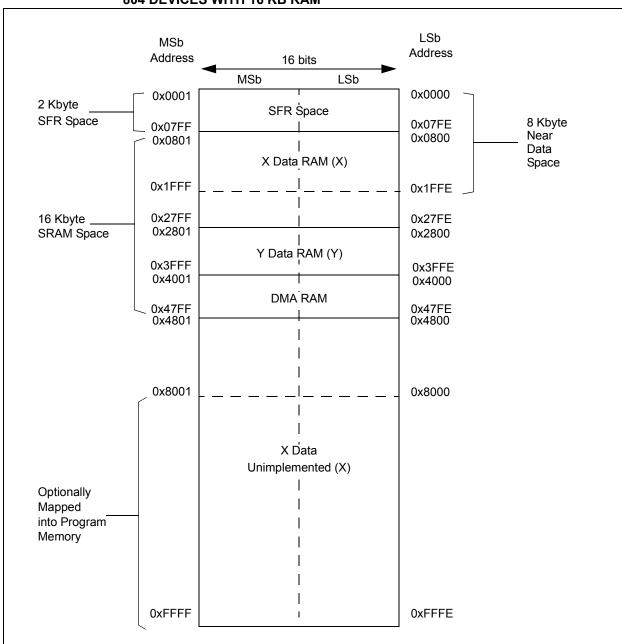


FIGURE 3-5: DATA MEMORY MAP FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804 DEVICES WITH 16 KB RAM

3.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

3.2.6 DMA RAM

Every dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 device contains up to 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 35

All Resets 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0800 XXXX XXXX XXXX XXXX XXXX XXXX XXXX 0000 0000 0000 XXXX XXXX XXXX 00xx XXXX 00xx 0000 0000 XXXX Bit 0 O 느 SN D Ħ XWM<3:0> Program Memory Visibility Page Address Pointer Registe Bit 2 DOSTARTH<5:0> PSV 8 Table Page Address Pointer Register Program Counter High Byte Register Bit 3 IPL3 z ACCBU ACCAU ACCSAT Bit 4 Æ SATDW IPL0 퓲 YWM<3:0> Bit 6 SATB <u>P</u> Program Counter Low Word Register Repeat Loop Counter Register Stack Pointer Limit Register SATA Bit 7 IPL2 Working Register 12 Working Register 13 Working Register 14 Working Register 15 Working Register 10 Working Register 5 Working Register 6 Working Register 9 Working Register 11 Working Register 7 Working Register 0 Working Register 2 Working Register 3 Working Register 4 Working Register 8 Working Register ACCAH ACCAL ACCBH DOSTARTL<15:1> ACCBL DOENDL<15:1> Bit 8 2 DL<2:0> Bit 9 A BWM<3:0> SAB Ë Bit 11 OAB EDT ACCB<39> ACCA<39> 12 NS SB **CPU CORE REGISTERS MAP** Ħ 13 SA 藍 YMODEN OB Bit 1 XMODEN Bit 15 8 0002 0004 8000 000A 000E 0010 0012 0014 0016 0018 001A 001C 001E 0026 002C 0030 0032 003A 003C 003E 0040 0046 9000 000C 0020 0022 0024 0028 002A 002E 0034 0036 0038 944 0000 0042 **TABLE 3-1:** SFR Name DOSTARTH DOSTARTL MODCON WREG12 **WREG13** WREG14 WREG15 RCOUNT CORCON WREG10 DOENDH WREG5 DCOUNT WREG11 **PSVPAG** DOENDL WREG6 ACCAU TBLPAG WREG4 WREG8 WREG9 WREG0 WREG1 WREG2 WREG3 WREG7 ACCAH SPLIM ACCAL ACCBL ACCBH ACCBU PCH 집 SR

Legend: x = unknown value on Reset, --= unimplemented, read as '0'. Reset values are shown in hexadecimal

_	
CONTINUED	
MAP (
REGISTERS	
CORE	
CPU	
BLE 3-1:	
≰	

							,											
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6	Bit 7	Bit 6	Bit 5	Bit 4	Bit 5 Bit 4 Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT 0048	0048							×	XS<15:1>								0	XXXX
XMODEND 004A	004A							×	XE<15:1>								1	xxxx
YMODSRT	004C							λ	YS<15:1>								0	XXXX
YMODEND 004E	004E							Υŀ	YE<15:1>								1	XXXX
XBREV	0020	BREN							*	XB<14:0>								XXXX
DISICNT	0052	Ι	-						Disable	Disable Interrupts Counter Register	Sounter Re	gister						XXXX

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302 **TABLE 3-2:**

SFR Name	SFR SFR Name Addr	Bit 15	Bit 15 Bit 14 Bit 13 Bit 12	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0900	CN15IE	CN14IE	CN13IE	CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE	CN11IE	1	1	1	CN7IE	CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN0IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE		0000
CNEN2 00C2	00C2	_	CN30IE CN29IE	CN29IE	Ι	CN27IE	I	1	CN24IE	CN23IE	CN24IE CN23IE CN22IE CN21IE	CN21IE	I	I	I	I	CN16IE	0000
CNPU1	8900	CN15PUE	CN14PUE	CN13PUE	CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE	CN11PUE	-	_	1	CN7PUE	CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CNOPUE	0000
CNPU2 006A	006A	1	CN30PUE CN29PUE	CN29PUE	1	CN27PUE	I	I	CN24PUE	CN23PUE	CN24PUE CN23PUE CN22PUE CN21PUE	CN21PUE	I	I	1	I	CN16PUE 0000	0000

—= unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset, Legend:

4	All Resets	0000	0000	0000	0000
TER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304		CNOIE	CN27IE CN26IE CN25IE CN24IE CN23IE CN22IE CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE	CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN5PUE CN5PUE CN3PUE	- CN30PUE CN29PUE CN28PUE CN27PUE CN27PUE CN25PUE CN24PUE CN23PUE CN23PUE CN22PUE CN20PUE CN19PUE CN18PUE CN17PUE CN17PUE CN16PUE 0000
PIC33F.	Bit 1	CN1IE	CN17IE	CN1PUE	CN17PUE
AND ds	Bit 3 Bit 2	CN2IE	CN18IE	CN2PUE	CN18PUE
204/804	Bit 3	CN3IE	CN19IE	CN3PUE	CN19PUE
FJ64GP;	Bit 4	CN4IE	CN20IE	CN4PUE	CN20PUE
IsPIC33I	Bit 5	CN5IE	CN21IE	CN5PUE	CN21PUE
14/804, a	Bit 6	CN6IE	CN22IE	CN6PUE	CN22PUE
28GP20	Bit 7	CN7IE	CN23IE	CN7PUE	CN23PUE
IC33FJ1	Bit 8	CN8IE	CN24IE	CN8PUE	CN24PUE
OR dsP	Bit 9	CN9IE	CN25IE	CN9PUE	CN25PUE
RAP F	Bit 10	CN10IE	CN26IE	CN10PUE	CN26PUE
EGISTEF	Bit 11	CN11IE	CN27IE	CN11PUE	CN27PUE
TION R	Bit 12	CN12IE	CN28IE	CN12PUE	CN28PUE
TABLE 3-3: CHANGE NOTIFICATION REGIST	Bit 13	CNENT 0060 CN15IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CN	CN30IE CN29IE CN28IE	CN13PUE	CN29PUE
NGE N	Bit 14	CN14IE	CN30IE	CN14PUE	CN30PUE
СНА	Bit 15	CN15IE	I	CN15PUE	
≣ 3-3:	SFR Addr	0900	00C2	8900	006A
TABLE	SFR SFR B	CNEN1	CNEN2 00C2	CNPU1	CNPU2 006A

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,

All Resets 4444 4444 4444 0440 0444 4400 4444 0000 0444 4444 4404 4444 4444 4444 0004 0440 4440 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 4440 0000 S12C11F INTOIE INTOIF SPIZEIF SI2C1IE SPIZEIE INT0EP Bit 0 DMA2IP<2:0> SPI2EIP<2:0> DMA3IP<2:0> SI2C1IP<2:0> DMA6IP<2:0> DMA0IP<2:0> U1TXIP<2:0> INT1IP<2:0> MI2C11F MI2C1IE INT0IP<2:0> SPI2IF DCIIP<2:0> T5IP<2:0> OSCFAIL INT1EP SPIZIE U1EIE T3IP<2:0> IC1IF U1EIF IC1IE Bit 1 C1RXIF(1) C1RXIE(1) UZEIE OC1IE **INT2EP** OC1IF UZEIF CMIE CMIF ADDRERR VECNUM<6:0> C11F⁽¹⁾ CRCIE CRCIF C11E(1) CNF T1E CNE Bit 3 T1 F MATHERR **DMA3IF DMA6IE DMA0IF DMA6IF** INT11E INT1IF **DMA0IE DMA3IE** Bit 4 MI2C1IP<2:0> DMA5IP<2:0> DMA71P<2:0> SPI1EIP<2:0> INT2IP<2:0> SPI2IP<2:0> U1EIP<2:0> OC3IP<2:0> PMPIP<2:0> DMACERR IC11P<2:0> IC2IP<2:0> AD11P<2:0> **DMA7IE DMA7IF** Bit 5 IC2IF IC2IE C1TXIE(1) DIVOERR C1TXIF(1) OC2IF OC2IE IC7IE IC7IF SFTACERR IC8IF IC8IE Bit 7 T2IF T2IE Ι I **DMA2IF** COVTE **DMA2IE** Bit 8 T3IF T3IE DAC1RIP<2:0>(2) C1RXIP<2:0>(1) C1TXIP<2:0>(1 U2RXIP<2:0> DMA4IP<2:0> DMA11P<2:0> OC1IP<2:0> OC4IP<2:0> OC2IP<2:0> SP111P<2:0> CMIP<2:0> IC7IP<2:0> RTCIP<2:0> U2EIP<2:0> SPI1EIF SPI1EIE OVBTE OC3IF OC3IE Bit 9 SPI1IF OC4IF **SPI1IE** OVATE OC4IE Bit 10 COVBERR **U1RXIF U1RXIE** DCIEIF DCIEIE Bit 11 T4IE T4IF I I COVAERR **U1TXIF U1TXIE** Bit 12 DCIIF DCIIE TSIE T5IF I DAC1LIP<2:0>(2) U1RXIP<2:0> U2TXIP<2:0> C1IP<2:0>(1) DCIEIP<2:0> CRCIP<2:0> OVBERR CNIP<2:0> IC8IP<2:0> INT2IF **DMA5IF** AD11E INT2IE **DMA5IE** T1IP<2:0> T2IP<2:0> T4IP<2:0> **AD1IF** PMPIE PMPIF DAC1RIE⁽²⁾ DAC1RIF(2) U2RXIE **DMA1IF** U2RXIF DMA4IF **DMA1IE** RTCIE OVAERR RTCIF DMA4IE Bit 14 DISI DAC1LIE⁽²⁾ DAC1LIF(2) **U2TXIF FLTA11E** Bit 15 NSTDIS **U2TXIE** ALTIVT 9800 8800 008A 008C 009A O00C 00A4 00A6 00A8 00AC 00AE 00B2 00B4 00B6 00BA 00C0 9000 00E0 0082 0084 9600 00AA 00B0 00C2 00C4 00CA SFR Addr 0080 0094 8600 NTCON2 NTTREG NTCON1 SFR Name IPC15 IPC16 IPC19 IPC14 IPC17 IPC11 IFS0 IPC5 IPC7 IPC8 IPC9 IFS1 IFS2 FS3 FS4 IEC0 IEC2 IEC3 IEC4 IPC0 IPC2 IPC3 PC4 PC6 EC1 PC1

x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Interrupts disabled on devices without ECAN[™] modules ₩ ;; Note

Interrupts disabled on devices without Audio DAC modules.

INTERRUPT CONTROLLER REGISTER MAP

IABLE 3-4:

EGISTER MAP
5: TIMER R
TABLE 3-

All Resets	xxxx	FFFF	0000	××××	××××	××××	FFFF	FFFF	0000	0000	××××	××××	××××	FFFF	FFFF	0000	0000
Bit 0			I						I	I						I	1
Bit 1			TCS						TCS	TCS						TCS	TCS
Bit 2			TSYNC						I	I						I	1
Bit 3			1						T32	1						T32	1
Bit 4			<1:0>						<1:0>	<1:0>						<1:0>	<1:0>
Bit 5			TCKPS<1:0>		(ylr				TCKPS<1:0>	TCKPS<1:0>		(ýlr				TCKPS<1:0>	TCKPS<1:0>
Bit 6			TGATE		Timer3 Holding Register (for 32-bit timer operations only)				TGATE	TGATE		Timer5 Holding Register (for 32-bit timer operations only)				TGATE	TGATE
Bit 7	Timer1 Register	Period Register 1	I	Timer2 Register	32-bit timer	Timer3 Register	Period Register 2	Period Register 3	I	I	Timer4 Register	- 32-bit timer	Timer5 Register	Period Register 4	Period Register 5	I	1
Bit 8	Timer1	Period F	1	Timer2	Register (for	Timer3	Period F	Period F	1	I	Timer4	Register (for	Timer5	Period F	Period F	1	ı
Bit 9			_		ner3 Holding				_	I		ner5 Holding				_	1
Bit 10			I		ᄪ				I	I		TII				I	1
Bit 11			Ι						Ι	1						Ι	1
Bit 12			Ι						Ι	1						Ι	1
Bit 13			TSIDI						TSIDI	TSIDL						TSIDI	TSIDL
Bit 14			I						I	1						I	1
Bit 15			NOT						NOT	TON						NOT	NOT
SFR Addr	0100	0102	0104	0106	0108	010A	010C	010E	0110	0112	0114	0116	0118	011A	011C	011E	0120
SFR Name	TMR1	PR1	T1CON	TMR2	TMR3HLD	TMR3	PR2	PR3	T2CON	T3CON	TMR4	TMR5HLD	TMR5	PR4	PR5	T4CON	T5CON

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-6: INPUT CAPTURE REGISTER MAP

			Ī								-	-						
SFR Bit 15 Bit 14 Bit 13 Bit 12	Bit 14 Bit 13	Bit 13		Bit 12	-	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0140					1				Input 1 Ca	Input 1 Capture Register	Ji							XXXX
0142 — — ICSIDL —	- ICSIDI	ICSIDI		_		_	-		_	ICTMR	ICI<1:0>	<0:	ICOV	ICBNE		ICM<2:0>		0000
0144									Input 2 Ca	Input 2 Capture Register	Į.							xxxx
0146 — — ICSIDL —	ICSIDIT —	ICSIDI		I		1	I	-	1	ICTMR	ICI<1:0>	6 .	ICOV	ICBNE		ICM<2:0>		0000
0158									Input 7 Ca	Input 7 Capture Register	jr.							xxxx
015A — — ICSIDL —	ICSIDIT —	ICSIDI		1		1	I	-	1	ICTMR	ICI<1:0>	6 :	ICOV	ICBNE		ICM<2:0>		0000
015C									Input 8Ca _l	Input 8Capture Register	نا							XXXX
015E — — ICSIDL —	ICSIDIT —	ICSIDF		1		ı	ı	1	1	ICTMR	ICI<1:0>	.	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

_
4
\geq
_
œ
Ш
ST
#
ဗ္ဗ
R
Щ
Υ
Δ
5
5
\aleph
5
┙
E
\supset
0
~
ကို
ш
$\mathbf{\overline{\omega}}$

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Out	Output Compare 1 Secondary Register	1 Secondar	ry Register							xxxx
OC1R	0182								Output Cor	Output Compare 1 Register	yister							xxxx
OC1CON	0184	I	1	OCSIDE	1	Ι	I	I	-	I	I	I	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Out	Output Compare 2 Secondary Register	2 Secondar	ry Register							xxxx
OC2R	0188								Output Cor	Output Compare 2 Register	yister							xxxx
OCZCON	018A	I	1	OCSIDE	1	Ι	I	I	-	I	I	I	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Out	Output Compare 3 Secondary Register	3 Secondar	ry Register							xxxx
OC3R	018E								Output Cor	Output Compare 3 Register	jister							xxxx
OC3CON	0190	I	1	OCSIDE	1	Ι	I	I	-	I	I	I	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Out	Output Compare 4 Secondary Register	4 Secondar	ry Register							xxxx
OC4R	0194								Output Coi	Output Compare 4 Register	jister							xxxx
OC4CON	0196	Ι	1	OCSIDE	-	Ι	Ι	1	1	Ι	I	1	OCFLT	OCTSEL		OCM<2:0>		0000
	1 1 1 1 1	4000	1000	- la saisan -				The same of	and the formula of	1								1

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend:

TABLE 3	.; 9	TABLE 3-8: 12C REGISTER MAP	SISTER I	MAP				•										
SFR Name Addr	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	1	I	I	1	I	1	I	I				Receive Register	Register				0000
I2C1TRN	0202	I	I	I	I	I	I	I	I				Transmit Register	Register				00FF
I2C1BRG	0204	I	I	I	I	I	I	Ι				Baud Rat	Baud Rate Generator Register	Register				0000
I2C1CON	0206	ISCEN	Ι	12CSIDL	SCLREL	IPMIEN	A10M	MTSSIQ	SMEN	GCEN	STREN	ACKDT	ACKDT ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	-	I	1	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Ь	S	R_W	RBF	TBF	0000
I2C1ADD	020A	I	-	-	I	1	-					Address Register	Register					0000
I2C1MSK	020C	I	1	1	I	Ι	I				,	Address Ma	Address Mask Register					0000
- Pages	, a	I accord indicates and party and party in household road and (2) Decetive and should in households	+0000	- Jamian	ocos potace	000,00	0 0011011	ai airio do ori	gioopoxod	-								

x = unknown value on Reset,

TABLE 3-9:

:																			
U)	SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 Bit 9		Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
ı⊃	J1MODE	0220	0220 UARTEN	I	NSIDI	IREN	RTSMD	I	UEN1	UEN1 UEN0	WAKE LPBACK ABAUD URXINV BRGH	LPBACK	ABAUD	URXINV	BRGH		PDSEL<1:0> STSEL	STSEL	0000
⊃	U1STA	0222	0222 UTXISEL1 UTXINV UTXISEL0	VNIXTO	UTXISEL0	I	UTXBRK UTXEN UTXBF TRMT	UTXEN	UTXBF	TRMT	URXISEL<1:0>	L<1:0>	ADDEN	ADDEN RIDLE PERR	PERR	FERR	FERR OERR URXDA	URXDA	0110
⊃	J1TXREG	0224	I	I	I	I	I	I	I	UTX8			ń	UART Transmit Register	nit Register				xxxx
\Box	J1RXREG	0226	I	I	I	I	I	I	I	URX8			'n	UART Received Register	ed Register				0000
\supset	J1BRG	0228							Bauc	1 Rate Gen	Baud Rate Generator Prescaler	ıler							0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset, Legend:

ΑP
È
ER
Ë
38
Ä
2
占
¥
_
ö
Ĭ
Ш
B
₹

			.)	į														
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 Bit 9	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
U2MODE	0230	0230 UARTEN	I	NSIDI	IREN	RTSMD	1	UEN1	UENO		WAKE LPBACK ABAUD URXINV	ABAUD	URXINV	BRGH	PDSEL	PDSEL<1:0>	STSEL	0000
U2STA	0232	0232 UTXISEL1 UTXINV UTXISEL0	VNIXTO	UTXISEL0	I	NTXBRK	UTXEN	UTXEN UTXBF	TRMT	URXISE	URXISEL<1:0>	ADDEN	ADDEN RIDLE	PERR	_	FERR OERR URXDA	URXDA	0110
U2TXREG 0234	0234	Ι	I	1	I	I	I	1	UTX8			'n	UART Transmit Register	ıit Register				xxxx
U2RXREG 0236	0236	I	I	Ι	_	_	ı	_	URX8			Ü,	UART Receive Register	e Register				0000
U2BRG	0238							Bau	d Rate Gen	Baud Rate Generator Prescaler	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-11: SPI1 REGISTER MAP

	:	!															
SFR Name	SFR F	Bit 15	Bit 14	Bit 13	Bit 13 Bit 12 Bit 11 Bit 10	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3	Bit 4	Bit 3	Bit 2	Bit 1	ш
SPI1STAT 0240 SPIEN	0240	SPIEN	-	SPISIDL	I	I	1	I	I	I	SPIROV	I	I	I	I	SPITBF	SP
SPI1CON1 0242	0242	Ι	Ι	I	DISSCK	DISSDO	DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE<1:0	۲- 7:0
SPI1CON2		FRMEN	0244 FRMEN SPIFSD	FRMPOL	Ι	I	1	_	I	1	I	I	Ι	I	1	FRMDLY	
SPI1BUF 0248	0248							SPI1 Trans	SP11 Transmit and Receive Buffer Register	sive Buffer I	Register						

All Resets

00000

0000

SPIRBF

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-12: SPI2 REGISTER MAP

		!																
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13 Bit 12	Bit 12	Bit 11	Bit 11 Bit 10 Bit 9 Bit 8 Bit 7	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	0260 SPIEN	I	SPISIDL	I	I	I	I	I	I	SPIROV	I	I	I	I	SPITBF SPIRBF	SPIRBF	0000
SPI2CON1	0262	1	1	I	DISSCK	DISSDO	DISSDO MODE16 SMP		CKE SSEN	SSEN	CKP MSTEN	MSTEN	0)	SPRE<2:0>		PPRE<1:0>	<1:0>	0000
SPI2CON2 0264 FRMEN	0264	FRMEN	SPIFSD FRMPOL	FRMPOL	_	I	-	-	_	-	_	_	1	-	_	FRMDLY	-	0000
SPIZBUF	0268							SPI2 Transr	SPI2 Transmit and Receive Buffer Register	eive Buffer F	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

ADC1 REGISTER MAP FOR dsPIC33F.164GP202/802

TABLE 3-13. ADOL NEGISLEN MAT FOR GATIOSST 304GT 202/802, USTIOSST 3 126GT 202/802 AND USTIOSST 332GT 302	·	ב כ			3 40 1		1000	202/00	A, USPIC	321 0 166	30L 202/	200 AIN		100 LOC	200.10		٠	
File Name	Addr	Bit 15	Bit 14	Bit 14 Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ADC Data Buffer 0								xxxx
AD1CON1	0320	ADON	1	ADSIDL	ADDMABM	1	AD12B	FORM	FORM<1:0>		SSRC<2:0>		I	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	_	VCFG<2:0>	^	I	1	CSCNA	CHP	CHPS<1:0>	BUFS	I		SMPI<3:0>	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	I	I		Ś	SAMC<4:0>			_	I			ADCS<7:0>	<7:0>			0000
AD1CHS123	0326	I	I	I	I	I	CH123N	IB<1:0>	CH123NB<1:0> CH123SB	_	I	I	I	-	CH123N	CH123NA<1:0>	CH123SA	0000
AD1CHS0	0328	CHONB	I	I		Ö	CH0SB<4:0>			CHONA	I	I		Ö	CH0SA<4:0>			0000
AD1PCFGL	032C	Ι	Ι	I	PCFG12	PCFG11 PCFG10		PCFG9	Ι	_	I	PCFG5	PCFG4	PCFG3	PCFG2 PCFG1		PCFG0	0000
AD1CSSL	0330	1	1	-	CSS12	CSS11	CSS10	6SSO	-	_	-	CSS5	CSS4	csso	CSS2	CSS1	CSS0	0000
AD1CON4	0332	1	Ι	Ι	Ι	1	1	_	1	_	-	1	-	_	Q	DMABL<2:0>	٨	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 3-14:		ADCIL	200	ER MA	ADC1 REGISTER MAP FOR USI	SPICSS	179461	7204/80	7 C33FJ04GFZ04/804,	35FJ1Z	8GF204	804 AN	D dSPIC	535FJ3 2	GF 504			
File Name Addr Bit 15 Bit 14	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0 0300	0300								ADC Da	ADC Data Buffer 0								XXXX
AD1CON1	0320	ADON	Ι	ADSIDL	ADSIDL ADDMABM	I	AD12B	FORM	FORM<1:0>	S	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	_	VCFG<2:0>	٨	I	I	CSCNA	CHP	CHPS<1:0>	BUFS	I		SMPI<3:0>	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	-	Ι		Ś	SAMC<4:0>			I	I			ADCS<7:0>	<7:0>			0000
AD1CHS123 0326	0326	Ι	-	Ι	I	I	CH123N	CH123NB<1:0>	CH123SB	I	ı	I	_	Ι	CH123N	CH123NA<1:0>	CH123SA	0000
AD1CHS0	0328	CHONB	_	-		Ö	CH0SB<4:0>			CHONA	1	_		S	CH0SA<4:0>	^		0000
AD1PCFGL	032C	-	-	_	PCFG12	PCFG11	PCFG11 PCFG10 PCFG9	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	_	_	-	CSS12	CSS11	CSS10	6SSO	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	I	I	1	1	I	I	-	Ι	I	I	I	I	I		DMABL<2:0>	^	0000

agend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DAC1 REGISTER MAP FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804 **TABLE 3-15:**

All Resets	0000	0000	0000	0000	0000
Bit 0		REMPTY			
Bit 1		RITYPE RFULL REMPTY 00000			
Bit 2	<u> </u>	RITYPE			
Bit 4 Bit 3	DACFDIV<6:0>	I			
Bit 4	O	I			
Bit 5		RMVOEN			
Bit 6		1			
Bit 7	Ι	ROEN	DAC1DFLT<15:0>	DAC1RDAT<15:0>	DAC1LDAT<15:0>
Bit 8	FORM	LITYPE LFULL LEMPTY ROEN	DAC1DF	DAC1R[DAC1LE
Bit 9	1	LFULL			
Bit 11 Bit 10	Ι	LITYPE			
Bit 11	I	1			
Bit 12	DACSIDL AMPON	Ι			
Bit 13	DACSIDL	LMVOEN			
Bit 14	I	-			
Bit 15	DACEN	LOEN			
SFR Addr	03F0	03F2	03F4	03F6	03F8
SFR Name	DAC1CON 03F0	DAC1STAT 03F2	DAC1DFLT 03F4	DAC1RDAT 03F6	DAC1LDAT 03F8

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecims

TABLE 3-16 :	-16:	DMA F	REGIST	DMA REGISTER MAP	۵													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NOLLW	I	1	I	I	Ι	AMODE<1:0>	<0:1	Ι	ı	MODE<1:0>	1:0>	0000
DMA0REQ	0382	FORCE	I	I	I	Ι	1	Ι	I	I			뽀	RQSEL<6:0>				0000
DMA0STA	0384								S	STA<15:0>								0000
DMA0STB	0386								S.	STB<15:0>								0000
DMA0PAD	0388								Δ	PAD<15:0>								0000
DMA0CNT	038A	I	I	I	1	Ι	1					CNT<9:0>	6.					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NOLLW	I	I	1	1	I	AMODE<1:0>	<0:1	1	I	MODE<1:0>	1:0>	0000
DMA1REQ	038E	FORCE	I	I	I	Ι	Ι	Ι	I	I			뽀	IRQSEL<6:0>				0000
DMA1STA	0380								S	STA<15:0>								0000
DMA1STB	0392								S	STB<15:0>								0000
DMA1PAD	0394								ď	PAD<15:0>								0000
DMA1CNT	9620	I	I	I	1	Ι	1					CNT<9:0>	6.					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	MULLW	1	I	I	I	-	AMODE<1:0>	<0:1	Ι	I	MODE<1:0>	1:0>	0000
DMA2REQ	039A	FORCE	1	_	Ι	Ι	Ι	_	Ι	1			IF	RQSEL<6:0>				0000
DMA2STA	039C								S	STA<15:0>								0000
DMA2STB	039E								S	STB<15:0>								0000
DMA2PAD	03A0								Δ	PAD<15:0>								0000
DMA2CNT	03A2	I	I	-	Ι	Ι	Ι					CNT<9:0>	<0.					0000
DMA3CON	03A4	CHEN	SIZE	BIR	HALF	MULLW	Ι	Ι	I	-	Ι	AMODE<1:0>	<0:1	1	Ι	MODE<1:0>	1:0>	0000
DMA3REQ	03A6	FORCE	I	-	Ι	Ι	Ι	-	I	-			포	IRQSEL<6:0>				0000
DMA3STA	03A8								S	STA<15:0>								0000
DMA3STB	03AA								S.	STB<15:0>								0000
DMA3PAD	03AC								⁄d	PAD<15:0>								0000
DMA3CNT	03AE	1	-	_	1	_	1					CNT<9:0>	<0.					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_	ı	ı	I	1	AMODE<1:0>	<0:1	Ι	-	MODE<1:0>	-1:0>	0000
DMA4REQ	03B2	FORCE	Ι	-	1	-	Ι	Ι	Ι	1			IR	RQSEL<6:0>				0000
DMA4STA	03B4								S	STA<15:0>								0000
DMA4STB	03B6								S.	STB<15:0>								0000
DMA4PAD	03B8								bγ	PAD<15:0>								0000
DMA4CNT	03BA	1	1	I	1	Ι	-					CNT<9:0>	<0.					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	Ι	Ι	Ι	_	-	AMODE<1:0>	<0:1	1	1	MODE<1:0>	-1:0>	0000
DMA5REQ	03BE	FORCE	1	I	1	Ι	Ι	I	ı	1			Ŗ	IRQSEL<6:0>				0000
DMA5STA	03C0								S	STA<15:0>								0000
DMA5STB	03C2								S	STB<15:0>								0000
.pagood.	 	= unimplemented	,∪, se pear pe	, Pasat,	Reset values are shown in		hexadecimal										•	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-16:	:-16:	DMA F	EGIST	ER MAF	CON C	DMA REGISTER MAP (CONTINUED)												
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4								PΑ	PAD<15:0>								0000
DMA5CNT	9366	-	_	1	_	_	1					CNT<9:0>	<0:6>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	MULLW	_	-	-	_	1	AMODE<1:0>	<1:0>	_	ı	MODE<1:0>		0000
DMA6REQ	03CA	FORCE	_	1	_	_	1	-	-	-			R	RQSEL<6:0>				0000
DMA6STA	03CC								S	STA<15:0>								0000
DMA6STB	03CE								S	STB<15:0>								0000
DMA6PAD	03D0								PΑ	PAD<15:0>								0000
DMA6CNT	03D2	-	_	1	_	_	-					CNT<9:0>	<0:6>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	1	-	-	-	1	AMODE<1:0>	<1:0>	_	ı	MODE<1:0>		0000
DMA7REQ	9080	FORCE	_	1	_	_	1	-	-	-			R	RQSEL<6:0>				0000
DMA7STA	03D8								S	STA<15:0>								0000
DMA7STB	03DA								S	STB<15:0>								0000
DMA7PAD	03DC								PΑ	PAD<15:0>								0000
DMA7CNT	03DE	1	1	1	I	1	1					CNT<9:0>	<0:6>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2 PWCOL1	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1)	XWCOL0	0000
DMACS1	03E2	ı	I	1	Ι		LSTCH<3:0>	<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4								/SO	DSADR<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 OR 1 (FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804) **TABLE 3-17:**

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	1	I	CSIDL	ABAT	CANCKS	RE	REQOP<2:0>	^	OPN	OPMODE<2:0>	^	I	CANCAP	I	1	NIW	0480
C1CTRL2	0402	I	I	_	Ι	_	I	1	I	I	Ι	I		Ū	DNCNT<4:0>			0000
C1VEC	0404	I	I	_		Œ.	FILHIT<4:0>			I			_	ICODE<6:0>				0000
C1FCTRL	0406	ā	DMABS<2:0>	٨	ı	_	Ι	_	-	Ι	I	-			FSA<4:0>			0000
C1FIFO	0408	I	Ι			FBP<5:0>	2:0>			I	Ι			FNRB<5:0>	<2:0>			0000
C1INTF	040A	I	Ι	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	Ι	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	_	_	-	_	_	_	_	IVRIE	WAKIE	ERRIE	-	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCNT<7:0>	/L<7:0>							RERRCNT<7:0>	T<7:0>				0000
C1CFG1	0410	I	I	_	I	_	I	1	I	SJW<1:0>	<0:			BRP<5:0>	5:0>			0000
C1CFG2	0412	I	WAKFIL	_	I	_	SE	SEG2PH<2:0>	Ÿ	SEG2PHTS	SAM	SE	SEG1PH<2:0>	<0	Ъ	PRSEG<2:0>	^	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9 FLTEN8	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTENO	FFFF
C1FMSKSEL1	0418	F7MSK<1:0>	<1:0>	F6MSK<1:0>	<1:0>	F5MSK<1:0>	<1:0>	F4MSk	F4MSK<1:0>	F3MSK<1:0>	:1:0>	F2MSK<1:0>	<1:0>	<0:1>XV	<1:0>	F0MSK<1:0>	<1:0>	0000
C1FMSKSEL2	041A	F15MSK<1:0>	X<1:0>	F14MSK<1:0>	<<1:0>	F13MS	F13MSK<1:0>	F12MS	F12MSK<1:0>	F11MSK<1:0>	<1:0>	F10MSK<1:0>	<<1:0>	F9MSK<1:0>	<1:0>	F8MSK<1:0>	<1:0>	0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

	AII Resets		0000 0	0000 91	0000 0	0000	0000	0000	0000	0000	XXXX	xxxx
	Bit 0		RXFUL0	RXFUL16	RXOVF	, RXOVF	TX0PRI<1:0>	TX2PRI<1:0>	TX4PRI<1:0>	TX6PRI<1:0>		
)2/804)	Bit 1		RXFUL1	RXFUL17	RXOVF1	RXOVF17	TX0P	TX2P	TX4P	ТХ6Р		
64GP8(Bit 2		RXFUL2 RXFUL1	RXFUL18	RXOVF2	RXOVF18	RTREN0	RTREN2	RTREN4	RTREN6		
IC33FJ	Bit 3		RXFUL3	RXFUL19	RXOVF3	RXOVF19	TXREQ0	TXREQ2	TXREQ4	TXREQ6		
ND dsF	Bit 4		RXFUL4	RXFUL20	RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0	RXOVF20	TXERR0	TXERR2	TXERR4	TXERR6		
32/804 #	Bit 5		RXFUL5	RXFUL21	RXOVF5	RXOVF21	TXLARB0	TXLARB2	TXABT4 TXLARB4	TXLARB6		
C1CTRL1.WIN = 0 (FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804)	Bit 6	×	RXFUL6	RXFUL22	RXOVF6	RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16	TXABT0 TXLARB0 TXERR0	TXABT2	TXABT4	TXABT6		
IC33FJ1	Bit 7	See definition when WIN = x	RXFUL7	RXFUL25 RXFUL24 RXFUL23 RXFUL22	RXOVF7	RXOVF23	TXEN0	TXEN2	TXEN4	TXEN6	Jata Word	ata Word
OR dsP	Bit 8	definition	RXFUL8	RXFUL24	RXOVF8	RXOVF24	I<1:0>	I<1:0>	I<1:0>	I<1:0>	Received Data Word	Transmit Data Word
1 = 0 (F	Bit 9	See		RXFUL25	RXOVF9	RXOVF25	TX1PRI<1:0>	TX3PRI<1:0>	TX5PRI<1:0>	TX7PRI<1:0>		
RL1.WIN	Bit 10		RXFUL11 RXFUL10 RXFUL9	RXFUL26	RXOVF10	RXOVF26	RTREN1	RTREN3	RTREN5	RTREN7		
	Bit 11		RXFUL11	RXFUL27	RXOVF11 RXOVF10 RXOVF9	RXOVF27	TXREQ1	TXREQ3	TXREQ5	TXREQ7		
Р WHE	Bit 12		RXFUL12	RXFUL28	RXOVF12		TXERR1	TXERR3	TXERR5	TXERR7		
TER MA	Bit 13		RXFUL13	RXFUL29	RXOVF13	RXOVF29	TXLARB1	TXLARB3	TXLARB5	TXLARB7		
REGIS	Bit 14		RXFUL14	RXFUL30 RXFUL29	RXOVF14	RXOVF30	TXABT1 TXLARB1	TXABT3	TXABT5 TXLARB5	TXABT7		
ECAN1	Bit 15		RXFUL15 RXFUL14 RXFUL13 RXFUL12	RXFUL31	RXOVF15 RXOVF14 RXOVF13 RXOVF12	RXOVF31 RXOVF30 RXOVF29 RXOVF28	TXEN1	TXEN3	TXEN5	TXEN7		
18:	Addr	0400- 041E	0420	0422	0428	042A		0432	0434	0436	0440	0442
TABLE 3-18: ECAN1 REGISTER MAP WHEN	File Name		C1RXFUL1	C1RXFUL2	C1RXOVF1	C1RXOVF2	C1TR01CON 0430	C1TR23CON	C1TR45CON	C1TR67CON	C1RXD	C1TXD

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset, Legend:

ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 (FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804) **TABLE 3-19:**

Particulary Application Application	IABLE 3-19:		ECAN1 REGISTER MAP WHEN	EGIN I	EK MAI	WHEN		KLI.WI) T N	JK asri	C1C1 RL1.WIN = 1(FOR dSPIC33FJ1Z8GP8UZ/804 AND dSPIC33FJ64GP8UZ/804	3F0U2/004	AND as	PICSSFJ	04GF8	12/804)	-	
Quille Shoe definition when WINE a. FIRPPGIDE FIRPPGID	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10		Bit 8			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
Q420 FSBP<3D> FSBP<3D> FGBP<3D> FGBP<3D		0400- 041E							Š	e definitior	II							
0422 F7BP42DD F7BP43DD <	C1BUFPNT1	0420		F3BP	<3:0>			F2BP	<3:0>		L	:1BP<3:0>			F0BP	<3:0>		0000
0424 F108+20> F108+50> <	C1BUFPNT2	0422		F7BP	<3:0>			F6BP	<3:0>		Ŧ	-5BP<3:0>			F4BP	<3:0>		0000
Q428 FF14BP-3(p) FF14BP-3(p) FF12BP-4(1) FF12BP-4(1) Q432 SIDC-10-3 SIDC-20-4 FID-71/16-7 Q432 SIDC-10-3 TD 70-7 FID-71/16-7 Q432 SIDC-10-3 SIDC-20-4 TD 70-7 FID-71/16-7 Q432 SIDC-10-3 SIDC-10-3 TD 70-7 FID-71/16-7 Q433 SIDC-10-3 SIDC-10-3 TD 70-7 FID-71/16-7 Q438 SIDC-10-3 SIDC-10-3 SIDC-10-3 TD 70-7 FID-71/16-7 Q438 SIDC-10-3 SIDC-10-3 SIDC-10-3 SIDC-10-1 FID-71/16-7 Q444 SIDC-10-3 SIDC-10-3 SIDC-10-3 SIDC-10-3 SIDC-11/16-7 Q444 SIDC-10-3 SIDC-10-3 SIDC-10-3 SIDC-10-3 SIDC-10-3 Q444 SIDC-10-3 SIDC-10-3 SIDC-20-4 SIDC-10-3 SIDC-10-3 Q444 SIDC-10-3 SIDC-20-4 SIDC-10-3 SIDC-10-3 SIDC-10-3 Q450 SIDC-10-3 SIDC-20-4 SIDC-10-3 SIDC-10-3	C1BUFPNT3	0424		F11BF	<3:0>			F10BF	<3:0>		F	-9BP<3:0>			F8BP	<3:0>		0000
0430 SID<403+ SID<404- MIDE ID< FID ED<17-10- 0431 SID<403+	C1BUFPNT4	0426		F15BF	<3:0>			F14BF	<3:0>		F	13BP<3:0>			F12BP	<3:0>		0000
0432 EID-C1689 EID-C1689 EID-C1769 EID	C1RXM0SID	0430				SID<1	0:3>				SID<2	2:0>	Ι	MIDE	_	EID<17	:16>	xxxx
0434 SID-CIGSD SID-CIGDS IMDE EDC/TOP-TOP 0438 SID-CIGSD SID-CADA TED-TOP-TOP EDC/TOP-TOP 0438 SID-CIGSD SID-CADA EDC/TOP-TOP EDC/TOP-TOP 0440 SID-CIGSD SID-CADA SID-CADA EDC/TOP-TOP 0440 SID-CIGSD SID-CADA SID-CADA SID-CADA 0444 SID-CIGSD SID-CADA SID-CADA SID-CADA 0444 SID-CIGSD SID-CADA SID-CADA SID-CADA 0444 SID-CIGSD SID-CADA SID-CADA SID-CADA 0446 SID-CIGSD SID-CADA SID-CADA SID-CADA 0456 SID-CIGSD SID-CADA SID-CADA SID-CADA 0466 SID-CIGSD SID-CADA SID-CADA SID-CADA<	C1RXM0EID	0432				EID<1	5:8>						EID	<0:2:				xxxx
0438 EDO-1639 EDO-1630 EDO-1630 <th< td=""><td>C1RXM1SID</td><td>0434</td><td></td><td></td><td></td><td>SID<1</td><td>0:3></td><td></td><td></td><td></td><td>SID<2</td><td>2:0></td><td>Ι</td><td>MIDE</td><td>_</td><td>EID<17</td><td>:16></td><td>xxxx</td></th<>	C1RXM1SID	0434				SID<1	0:3>				SID<2	2:0>	Ι	MIDE	_	EID<17	:16>	xxxx
4438 SID<403+ SID<404- MIDE FED<470- 6443 BID<4168+	C1RXM1EID	0436				EID<1.	5:8>						EID	<0:2:				xxxx
0434 EID-168-b EID-168-b EID-170-b EID	C1RXM2SID	0438				SID<1	0:3>				SID<2	2:0>	Ι	MIDE	_	EID<17	:16>	xxxx
0440 SIDC-103+ SIDC-20- EDIC-170+ EDIC-170+ 0442 BIDC-158+ BIDC-103+ BIDC-103+ BIDC-103+ 0446 BIDC-158+ BIDC-103+ BIDC-103+ BIDC-103+ 0448 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0449 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0440 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0440 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0440 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0462 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0463 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0464 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0465 BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ BIDC-103+ 0466 BIDC-103+ BIDC-103+ <t< td=""><td>C1RXM2EID</td><td>043A</td><td></td><td></td><td></td><td>EID<1</td><td>5:8></td><td></td><td></td><td></td><td></td><td></td><td>EID</td><td><0:2:</td><td></td><td></td><td></td><td>xxxx</td></t<>	C1RXM2EID	043A				EID<1	5:8>						EID	<0:2:				xxxx
0442 EIDC158 EIDC70A EIDC70A EIDC710A EI	C1RXF0SID	0440				SID<1	0:3>				SID<2	5:0>	Ι	EXIDE	Ι	EID<17	:16>	xxxx
444 SID-(10.3+) SID-(2.0+) EDC/10-7	C1RXF0EID	0442				EID<1.	5:8>						EID	<0:2:				xxxx
0446 EID-51/58 EID-51/58 EID-71/59 EID	C1RXF1SID	0444				SID<1	0:3>				SID<2	2:0>	Ι	EXIDE	1	EID<17	:16>	XXXX
0448 SID<410-35 SID<420-40 EDV-710-40 EDV-710-70-70 EDV-710-70-70 EDV-710-70-70 EDV-710-70-70 EDV-710-70-70 EDV-710-70-70 EDV-711-70-70 EDV-711-70-70-70 EDV-711-70-70-70-70 EDV-711-70-70-70-70 EDV-711-70-70-70-70-70 EDV-711-70-70-70-70-70-70 EDV-711-70-70-70-70-70-70-70 EDV-711-70-70-70-70-70-70-70-70-70-70-70-70-70-	C1RXF1EID	0446				EID<1.	5:8>						EID	<0:7:				xxxx
0446 EID-C158+ SID-C20+ EID-C7-D 044C SID-C158+ SID-C10- EID-C7-D EID-C7-D 044E SID-C102+ SID-C20+ EID-C7-D EID-C7-D 045B SID-C102+ SID-C20+ EID-C7-D EID-C7-D 045C SID-C102+ SID-C20+ EID-C7-D EID-C7-D 046C SID-C102+ SID-C20+ EID-C7-D EID-C7-D 046B SID-C102+ EID-C7-D EID-C7-D EID-C7-D 046B<	C1RXF2SID	0448				SID<1	0:3>				SID<2	5:0>	1	EXIDE	_	EID<17	:16>	XXXX
044C SID<410-3> SID<420> CKIDE	C1RXF2EID	044A				EID<1	5:8>						EID	<0:2:				xxxx
446 EID<4589 EID<770> 0460 SID<40.3> SID<2.0> - EID<770> EID<7716> EI	C1RXF3SID	044C				SID<1	0:3>				SID<2	2:0>	Ι	EXIDE	_	EID<17	:16>	xxxx
0450 SID<-0.3> SID<-2.0> EXID EXID ED<-7.0> 0452 EID<-16.8> SID<-2.0> EID<-7.0> EID<-7.0> EID<-7.0> 0454 SID<-10.3> SID<-2.0> EID	C1RXF3EID	044E				EID<1	5:8>						EID	<0:2:				xxxx
0462 EID FID FID <td>C1RXF4SID</td> <td>0450</td> <td></td> <td></td> <td></td> <td>SID<1</td> <td>0:3></td> <td></td> <td></td> <td></td> <td>SID<2</td> <td>5:0></td> <td>Ι</td> <td>EXIDE</td> <td>Ι</td> <td>EID<17</td> <td>:16></td> <td>xxxx</td>	C1RXF4SID	0450				SID<1	0:3>				SID<2	5:0>	Ι	EXIDE	Ι	EID<17	:16>	xxxx
0454 SID<403> SID<2:0> EXIDE EXT/16> EID<17:0> 0456 EID<158> SID<2:0> — EXID — <t< td=""><td>C1RXF4EID</td><td>0452</td><td></td><td></td><td></td><td>EID<1.</td><td>5:8></td><td></td><td></td><td></td><td></td><td></td><td>EID</td><td><0:2:</td><td></td><td></td><td></td><td>xxxx</td></t<>	C1RXF4EID	0452				EID<1.	5:8>						EID	<0:2:				xxxx
0456 EID<5138> EID<770> 0458 SID<210:3*	C1RXF5SID	0454				SID<1	0:3>				SID<2	5:0>	Ι	EXIDE	_	EID<17	:16>	xxxx
0458 SID<40.3> SID<2:0> EXIDE EXIDE EID<477:16> EXIDE EID<477:16> EXIDE EID<477:16> EID<477:16> EXIDE EID<477:16> EID<4	C1RXF5EID	0456				EID<1	2:8>						EID	<0:2:				XXXX
045A EID<15:8> EID<7:0> EID<7:10> 045C SID<10:3> SID<2:0> - EID<7:0> EID<7:10> EID<17:10> EID<17:10> <td< td=""><td>C1RXF6SID</td><td>0458</td><td></td><td></td><td></td><td>SID<1</td><td>0:3></td><td></td><td></td><td></td><td>SID<2</td><td>5:0></td><td>Ι</td><td>EXIDE</td><td>_</td><td>EID<17</td><td>:16></td><td>xxxx</td></td<>	C1RXF6SID	0458				SID<1	0:3>				SID<2	5:0>	Ι	EXIDE	_	EID<17	:16>	xxxx
045C SID<40.5 SID<2:0 EXIDE EXIDE EID<7:10 EID<7:	C1RXF6EID	045A				EID<1	5:8>						EID	<0:2:				xxxx
045E EID<710>+ EID<710>+ EID<710>+ EID<710+> EID<7116>+	C1RXF7SID	045C				SID<1	0:3>				SID<2	2:0>	Ι	EXIDE	_	EID<17	:16>	xxxx
0460 SID<40.3> SID<2.0> EXIDE EXIDE EID<77.16> EID<77.16> <t< td=""><td>C1RXF7EID</td><td>045E</td><td></td><td></td><td></td><td>EID<1</td><td>2:8></td><td></td><td></td><td></td><td></td><td></td><td>EID</td><td><0:2:</td><td></td><td></td><td></td><td>XXXX</td></t<>	C1RXF7EID	045E				EID<1	2:8>						EID	<0:2:				XXXX
0462 EID<713> EID<77.0> 0464 SID<410.3> SID<21.0> EID<71.0+	C1RXF8SID	0460				SID<1	0:3>				SID<2	5:0>	1	EXIDE	_	EID<17	:16>	XXXX
0464 SID<410:3> SID<2:0> EXIDE EXIDE EID<17:16> <	C1RXF8EID	0462				EID<1	2:8>						EID	<0:2:				XXXX
0466 EID<7.0> EID<7.0> EID<7.0> EID<7.0> EID<7.16> EID<7.1	C1RXF9SID	0464				SID<1	0:3>				SID<2	5:0>	Ι	EXIDE	_	EID<17	:16>	xxxx
0468 SID<10:3> SID<2:0> C KIDE C FID<17:16> E ID<17:16> E ID<17:1	C1RXF9EID	0466				EID<1	2:8>						EID	<0:2:				XXXX
046A EID<7.0> EID<7.0> EID<7.10> EID<7.10> EID<7.10 <	C1RXF10SID	0468				SID<1	0:3>				SID<2	2:0>	1	EXIDE	_	EID<17	:16>	XXXX
046C SID<10:3> SID<10:3> C EXIDE - EXIDE - EID<17:16>	C1RXF10EID	046A				EID<1	2:8>						EID	<0:2:				XXXX
	C1RXF11SID	046C				SID<1	0:3>				SID<2	5:0>	1	EXIDE	1	EID<17	:16>	XXXX

All Resets ×××× XXXX XXXX ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = $1(FOR\ dsPIC33FJ128GP802/804\ AND\ dsPIC33FJ64GP802/804)\ (CONTINUED)$ XXXX XXXX ×××× XXXX XXXX Bit 0 EID<17:16> EID<17:16> EID<17:16> EID<17:16> Bit 1 Bit 2 EXIDE EXIDE EXIDE Bit 3 EID<7:0> EID<7:0> EID<7:0> EID<7:0> EID<7:0> Bit 4 Bit 5 SID<2:0> SID<2:0> SID<2:0> SID<2:0> Bit 6 Bit 8 Bit 9 Bit 10 Bit 11 SID<10:3> SID<10:3> EID<15:8> SID<10:3> EID<15:8> SID<10:3> EID<15:8> Bit 12 Bit 13 Bit 14 5 퓲 0476 0478 047A 047C 047E 046E 0470 0472 0474 **TABLE 3-19:** C1RXF12SID C1RXF14SID C1RXF14EID C1RXF15SID C1RXF15EID C1RXF12EID C1RXF13SID C1RXF13EID C1RXF11EID File Name

gend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-20: DCI REGISTER MAP

:	ADLE 3-20.		בו בו	DOI REGISTER MAR	MAL															
	SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
۵	DCICON1	0280	DCIEN	1	DCISIDL	I	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	1	1	1	COFSM1	COFSM0	0000 0000 0000 0000	0
Ω	DCICON2	0282	I	I	Ι	I	BLEN1	BLENO	I		COFSG<3:0>	<3:0>		ı		W	WS<3:0>		0000 0000 0000 0000	0
Ω	DCICON3	0284	I	I	Ι	I						BCG<11:0>	<0						0000 0000 0000 0000	0
Ω	DCISTAT	0286	I	I	Ι	I	SLOT3	SLOT2	SLOT1	SLOT0	I	I	1	ı	ROV	RFUL	TUNF	TMPTY	0000 0000 0000 0000	0
Ľ	TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000 0000 0000 0000	0
Ä	RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000 0000 0000 0000	0
A.	RXBUF0	0290							Receive B	Receive Buffer 0 Data Register	a Registe	j							0000 0000 0000 0000	0
Я	RXBUF1	0292							Receive B	Receive Buffer 1 Data Register	a Registe	ic							0000 0000 0000 0000	0
Я	RXBUF2	0294							Receive B	Receive Buffer 2 Data Register	a Registe	j							0000 0000 0000 0000	0
Я	RXBUF3	0296							Receive B	Receive Buffer 3 Data Register	a Registe	j							0000 0000 0000 0000	0
T,	TXBUF0	0298							Transmit E	Transmit Buffer 0 Data Register	ta Registe	ìr.							0000 0000 0000 0000	0
T,	TXBUF1	029A							Transmit E	Transmit Buffer 1 Data Register	ta Registe	ìr.							0000 0000 0000 0000	0
T,	TXBUF2	029C							Transmit E	Transmit Buffer 2 Data Register	ta Registe	ìr.							0000 0000 0000 0000	0
Τ,	TXBUF3	029E							Transmit E	Transmit Buffer 3 Data Register	ta Registe	3r							0000 0000 0000 0000	0
-		a conjust -	London o con o	(°) 00 poon																l

Legend: — = unimplemented, read as '0'.

Bit 0 Bit 1 CSDIR<4:0> U1RXR<4:0> U2RXR<4:0> C1RXR<4:0> OCFAR<4:0> SDI1R<4:0> IC1R<4:0> IC7R<4:0> SS1R<4:0> Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 8 PERIPHERAL PIN SELECT INPUT REGISTER MAP U2CTSR<4:0> U1CTSR<4:0> T3CKR<4:0> SCK1R<4:0> SCK2R<4:0> CSCKR<4:0> COFSR<4:0> T5CKR<4:0> INT1R<4:0> IC2R<4:0> IC8R<4:0> Bit 10 Bit 11 Bit 12 Bit 13 Bit 14 15 蓝 06AA 06AE 9890 9690 06A6 06AC 06B4 Addr 0680 0682 0688 068E 0694 06A4 06A8 06B0 06B2 **TABLE 3-21:** File Name RPINR26⁽¹⁾ RPINR18 RPINR19 RPINR22 RPINR10 RPINR20 RPINR21 RPINR23 RPINR24 RPINR11 RPINR24 RPINR0 RPINR3 RPINR7 RPINR1 **RPINR**4

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal **Note 1:** This register is present only for dsPIC33FJ128GP802/804 and dsPIC33FJ64GP802/804

All Resets 1F00 001F 1F1F 1F1F 1F1F 1F1F 001F 1F1F 1F1F 1F1F 001F 1F1F 001F 1F1F 001F 001F

PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND **TABLE 3-22:**

1 Bit 0								
_								
Bit 1								
Bit 2	RP0R<4:0>	RP2R<4:0>	RP4R<4:0>	RP6R<4:0>	RP8R<4:0>	RP10R<4:0>	RP12R<4:0>	RP14R<4:0>
	R	R	R	R	R	RF	RF	RF
	-	1	_	1	1	_	1	1
	1	1	_	1	1	_	1	1
Bit 7	-	-	_	_	-	_	_	1
Bit 8								
Bit 9								
Bit 10	RP1R<4:0>	RP3R<4:0>	RP5R<4:0>	RP7R<4:0>	RP9R<4:0>	₹P11R<4:0>	3P13R<4:0>	RP15R<4:0>
Bit 11						1	ł	F
Bit 12								
Bit 13	_	_	_	_	_	_	_	_
Bit 14	1	_	_	_	_	_	_	1
Bit 15	_	_	_	_	_	_	_	_
Addr	0000	06C2	06C4	9290	06C8	06CA	2290	06CE
File Name	RPOR0	RPOR1	RPOR2	RPOR3	RPOR4	RPOR5	RPOR6	RPOR7
	File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3	File Name Addr Bit 15 Bit 14 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 RPOR0 06C0 -	File Name Addr Bit 15 Bit 14 Bit 11 Bit 11 Bit 11 Bit 11 Bit 11 Bit 12 Bit 11 Bit 11 Bit 12 Bit 24 Bit 3 RPOR1 06C0 — </td <td>File Name Addr Bit 15 Bit 13 Bit 11 Bit 11 Bit 11 Bit 11 Bit 11 Bit 11 Bit 12 Bit 11 Bit 11 Bit 21 Bit 24 Bit 3 Bit 3<</td> <td>File Name Addr Bit 15 Bit 13 Bit 11 Bit 12 Bit 2 Bit 3 Bit 3<</td> <td>File Name Addr Bit 15 Bit 13 Bit 11 Bit 21 Bit 21 Bit 3 Bit</td> <td>Addr Bit 15 Bit 14 Bit 24 Bit 24 Bit 3 Bit 3 Bit 3 Bit 3 Bit 3 Bit 4 Bit 3 Bit 3</td> <td>File Name Addr Bit 15 Bit 14 Bit 11 Bit 14 Bit 14 Bit 14 Bit 14 Bit 14 Bit 15 Bit 26 Bit 26 Bit 26 Bit 36 Bit 26 Bit 36 Bit 37 Bit 36 Bit 37 Bit 36 Bit 37 Bit 37</td>	File Name Addr Bit 15 Bit 13 Bit 11 Bit 11 Bit 11 Bit 11 Bit 11 Bit 11 Bit 12 Bit 11 Bit 11 Bit 21 Bit 24 Bit 3 Bit 3<	File Name Addr Bit 15 Bit 13 Bit 11 Bit 12 Bit 2 Bit 3 Bit 3<	File Name Addr Bit 15 Bit 13 Bit 11 Bit 21 Bit 21 Bit 3 Bit	Addr Bit 15 Bit 14 Bit 24 Bit 24 Bit 3 Bit 3 Bit 3 Bit 3 Bit 3 Bit 4 Bit 3 Bit 3	File Name Addr Bit 15 Bit 14 Bit 11 Bit 14 Bit 14 Bit 14 Bit 14 Bit 14 Bit 15 Bit 26 Bit 26 Bit 26 Bit 36 Bit 26 Bit 36 Bit 37 Bit 36 Bit 37 Bit 36 Bit 37 Bit 37

0000

00000

0000

0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND **TABLE 3-23:**

		dsPIC3	dsPIC33FJ32GP304	3P304		•					·						•	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0090	I	1	1			RP1R<4:0>			1	I	1		1	RP0R<4:0>			0000
RPOR1	06C2	1	1	1			RP3R<4:0>			Ι	1	I		-	RP2R<4:0>			0000
RPOR2	06C4	1	I	1			RP5R<4:0>			I	I	I			RP4R<4:0>			0000
RP0R3	9290	_	I	Ι			RP7R<4:0>			_	1	1		-	RP6R<4:0>			0000
RPOR4	8290	_	Ι	Ι			RP9R<4:0>			_	1	1		-	RP8R<4:0>			0000
RPOR5	06CA	_	I	I			RP11R<4:0>			I	I	I		2	RP10R<4:0>			0000
RPOR6	2290	_	I	Ι			RP13R<4:0>			_	1	1		8	RP12R<4:0>			0000
RPOR7	O6CE	_	Ι	Ι			RP15R<4:0>			_	1	1		8	RP14R<4:0>			0000
RPOR8	06D0	1	1	1			RP17R<4:0>			-	1	1		R	RP16R<4:0>			0000
RPOR9	06D2	_	-	_			RP19R<4:0>			_	1	_		R	RP18R<4:0>			0000
RPOR10	06D4	_	I	Ι			RP21R<4:0>			_	1	1		8	RP20R<4:0>			0000
RPOR11	9□90	_	1	-			RP23R<4:0>			_	1	1		R	RP22R<4:0>			0000
RPOR12	8G90	_	I	Ι			RP25R<4:0>			I	1	I		2	RP24R<4:0>			0000
	-																	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND **TABLE 3-24:**

		43F 10301 3350F 305) 100	100					٠	•	•	•	•	•	•	•		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0090	PMPEN	1	PSIDL	ADRMUX<1:0:	IX<1:0>	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP	I	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM	IRQM<1:0>	INCM<1:0>	<1:0>	MODE16		MODE<1:0>	WAITE	WAITB<1:0>		WAITM<3:0>	1<3:0>		WAITE<1:0>	:<1:0>	0000
PMADDR	2000	ADDR15	CS1							ADDR<13:0>	13:0>							0000
PMDOUT1	4						<u> </u>	Parallel Port [Parallel Port Data Out Register 1 (Buffers 0 and 1)	jister 1 (Buff	ers 0 and 1)							0000
PMDOUT2	9090						Т	Parallel Port [Parallel Port Data Out Register 2 (Buffers 2 and 3)	jister 2 (Bufl	ers 2 and 3)							0000
PMDIN1	8090							Parallel Port	Parallel Port Data In Register 1 (Buffers 0 and 1)	ster 1 (Buffe	rs 0 and 1)							0000
PMPDIN2	060A							Parallel Port	Parallel Port Data In Register 2 (Buffers 2 and 3)	ster 2 (Buffe	rs 2 and 3)							0000
PMAEN	D090	I	PTEN14	I	I	I	Ι	1	I	-	I	I	I	I	I	PTEN<1:0>	<1:0>	0000
PMSTAT	3090	IBF	IBOV	I	I	IB3F	IB2F	IB1F	IB0F	380	OBUF	I	I	OB3E	OB2E	OB1E	OBOE	0000
	-	Lo char com o la c	0,000	. 4000	[o bossod at an	lo ociio a											

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND **TABLE 3-25:**

ets	00	00	00	00	00	00	00	00	0000
Res		00	00	00	00	00	00	00	
פונס	RDSP	E<1:0>							OB0E
	WRSP	WAITE							OB1E
2 IIG	BEP								OB2E
2110	CS1P	1<3:0>							OB3E
DII 4	1	WAITN						•	ı
e lie	ALP							TEN<10:0>	I
o li o	CSF0	3<1:0>	13:0>	ers 0 and 1)	ers 2 and 3)	rs 0 and 1)	rs 2 and 3)	Ь	OBUF
) 11G	CSF1	WAITB	ADDR<	ister 1 (Buff	ister 2 (Buff	ster 1 (Buffe	ster 2 (Buffe		OBE
0110	PTRDEN	<1:0>		ata Out Reg	ata Out Reg	∂ata In Regi	∂ata In Regi		IB0F
6 110	PTWREN	MODE		arallel Port D	arallel Port D	arallel Port I	arallel Port I		IB1F
	PTBEEN	MODE16		P	P	Ь	Ь		IB2F
- 10	X<1:0>	:1:0>						1	IB3F
DIL 12	ADRMU	INCM						-	I
SI 110	PSIDL	<1:0>						_	I
DIC 14	I	IRQM	CS1					PTEN14	IBOV
CI 110	PMPEN	BUSY	ADDR15					-	IBF
Addi	0090	0602	0604	0004	9090	8090	060A	060C	3090
Tile Name	PMCON	PMMODE	PMADDR	PMDOUT1		PMDIN1	PMPDIN2	PMAEN	PMSTAT
	THE NAME AND DIES DIES DIES DIES DIES DIES DIES DIE	MINISTRICTURED FOR THE PILLS F	# Addr Bit 13 Bit 14 Bit 13 Bit 14 Bit 15 Bit 14 Bit 15 Bit 15 Bit 15 Bit 15 Bit 15 Bit 15 Bit 2 Bit 2 Bit 2 Bit 2 Bit 2 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 4 <td>3 Adur Bit 13 Bit 14 Bit 13 Bit 14 Bit 13 Bit 14 Bit 2 Bit 2 Bit 3 Bit 2 Bit 3 Bit 4 Bit 4</td> <td> Mode Mode </td> <td>Add Bit 13 Bit 13 Bit 13 Bit 13 Bit 14 Bit 14<td>Add Bit 13 Bit 14 Bit 15 Bit 15<td>Addr Bit 13 Bit 13 Bit 13 Bit 13 Bit 14 Bit 2 Bit 2 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 4</td><td>Add Bit 13 Bit 14 Bit 13 Bit 15 Bit 14 Bit 15 Bit 15</td></td></td>	3 Adur Bit 13 Bit 14 Bit 13 Bit 14 Bit 13 Bit 14 Bit 2 Bit 2 Bit 3 Bit 2 Bit 3 Bit 4 Bit 4	Mode Mode	Add Bit 13 Bit 13 Bit 13 Bit 13 Bit 14 Bit 14 <td>Add Bit 13 Bit 14 Bit 15 Bit 15<td>Addr Bit 13 Bit 13 Bit 13 Bit 13 Bit 14 Bit 2 Bit 2 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 4</td><td>Add Bit 13 Bit 14 Bit 13 Bit 15 Bit 14 Bit 15 Bit 15</td></td>	Add Bit 13 Bit 14 Bit 15 Bit 15 <td>Addr Bit 13 Bit 13 Bit 13 Bit 13 Bit 14 Bit 2 Bit 2 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 4</td> <td>Add Bit 13 Bit 14 Bit 13 Bit 15 Bit 14 Bit 15 Bit 15</td>	Addr Bit 13 Bit 13 Bit 13 Bit 13 Bit 14 Bit 2 Bit 2 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 4 Bit 4	Add Bit 13 Bit 14 Bit 13 Bit 15 Bit 14 Bit 15 Bit 15

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Δ
È
TER
SiS
REG
œ
ΔĀ
甸
Ă
₽
Y
쏤
2
ပ
뿔
Ψ
REAL-
R
-26
Ш
B
₹

File Name Addr Bit 15 Bit 14 Bit 13	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL 0620	0620						Alam	Alarm Value Register Window based on APTR<1:0>	er Window bas	sed on APTi	R<1:0>							xxxx
ALCFGRPT 0622 ALRMEN CHIME	0622	ALRMEN	CHIME		AMASK<3:0	<3:0>		ALRMPTR<1:0>	R<1:0>				ARPT<7:-0>	<2:-0>				0000
RTCVAL	0624						RTCC	RTCC Value Register Window based on RTCPTR<1:0>	· Window base	ed on RTCP	TR<1:0>							xxxx
RCFGCAL 0626 RTCEN	0626	RTCEN	_	RTCWREN RTCSYNC HAL	RTCSYNC	HALFSEC	ALFSEC RTCOE	RTCPTR<1:0>	<0:1>>				CAL<7:0>	<0:2				0000

end: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-27: CRC REGISTER MAP

										•	•	•					•	
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON 0640	0640	I	1	CSIDL		<i>></i>	VWORD<4:0>			CRCFUL CRCMPT	CRCMPT	1	CRCGO		PLEN<3:0>	<3:0>		0000
CRCXOR 0642	0642								X<	X<15:0>								0000
CRCDAT 0644	0644)	CRC Data Ir	CRC Data Input Register								0000
CRCWDAT 0646	0646								CRC Resu	CRC Result Register								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-28: DUAL COMPARATOR REGISTER MAP

IABLE 3-20. DUAL COMPANALOR REGISTER	-70.	חאטם	T INCO	או כא	NEGIO	IEN MAP	L											
File Name Addr Bit 15 Bit 14 Bit 13 Bit 12	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON 0630 CMIDL	0630	CMIDL	I	C2EVT	C2EVT C1EVT C2EN	CZEN	C1EN	CZOUTEN	C20UTEN C10UTEN C20UT C10UT C2INV C1INV C2NEG C2POS C1NEG C1POS	C2OUT	C10UT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON 0632	0632	_	_	I	I	I	_	_	I	CVREN	CVREN CVROE CVRR CVRSS	CVRR	CVRSS		CVR	CVR<3:0>		0000

igend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PORTA REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302 3-29: TABLE (

All Resets	079F	XXXX	xxxx	xxxx	
Bit 0	TRISAO	RA0	LATA0	-	
Bit 1	TRISA1	RA1	LATA1	_	
Bit 2	TRISA2	RA2	LATA2	_	
Bit 3	TRISA3 .	RA3	LATA3	_	
Bit 4	TRISA4	RA4	LATA4	_	
Bit 5	1	Ι	-	-	
Bit 6	I	Ι	_	_	
Bit 7	1	1	1	1	
Bit 8	1	_	_	_	
Bit 9	1	_	_	_	
Bit 10	-	1	_	_	
Bit 11	ı	I	1	1	
Bit 12	1	I	-	-	
Bit 13	I	_	_	_	
Bit 14 Bit 13	1	_	—	—	
	I	Ι	-	-	
Addr	02C0	02C2	02C4	02C6	
File Name Addr Bit 15	TRISA	PORTA	LATA	ODCA	

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	i
4	ì
32GP30	
IC33FJ	
FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ3;	
04/804 A	i
FJ64GP2	0 7. 4
IC33F.	- 7.4
04, dsF	0 7. 4
3P204/8	
3FJ1280	37
dsPIC3	77 72
AP FOR	
TER M	
A REGIS	i
PORT/	;
3-30:	
TABLE 3	i

ne	Addr	Bit 15	File Name Addr Bit 15 Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
TRISA	02C0	1	I	I	1	1	TRISA10	TRISA9	TRISA8	TRISA7	I	1	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	079F
PORTA	02C2	I	I	I	I	I	RA10	RA9	RA8	RA7	I	I	RA4	RA3	RA2	RA1	RAO	××××
	02C4	I	I	_	I	I	LATA10	LATA9	LATA8	LATA7	I	I	LATA4	LATA3	LATA2	LATA1	LATA0	××××
	02C6	I	I	_	I	I	ODCA10	ODCA9	ODCA8 ODCA7	ODCA7	I	I	Ι	I	I	I	I	××××

end: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 3-31: PORTB REGISTER MAP

Bit 10 Bit 8 Bit 6 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 1 Bit 2 Bit 1 Bit 2 Bit 3 Bit 4 Bit 4 <t< th=""></t<>
RISB9 TRISB8 TRISB7 TRISB6 TRISB4 TRISB3 TRISB2 TRISB3 TRISB3 </th
RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 LATB9 LATB8 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 ODCB9 ODCB8 ODCB6 ODCB6 ODCB6 ODCB6 ODCB6 ODCB6
LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 ODCB9 ODCB8 ODCB6 ODC
ODCB9 ODCB8 ODCB7 ODCB6 ODCB5

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

PORTC REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304 **TABLE 3-32:**

File Name	Addr	File Name Addr Bit 15 Bit 14 Bit 13	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	I	I	ı	I	I	I	TRISC9	TRISC9 TRISC8 TRISC7 TRISC6 TRISC5	TRISC7	TRISC6		TRISC4 TRISC3 TRISC2 TRISC1 TRISC0	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	02D2	-	-	-	_	_	-	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
LATC	02D4	_	-	-	_	_	-	LATC9	LATC9 LATC8	LATC7	LATC7 LATC6	LATC5	LATC4	LATC3 LATC2 LATC1	LATC2	LATC1	LATC0	XXXX
ODCC	02D6	_	-	-	_	_	-	ODCC3	9000 2000 8000	ODCC7	ODCC6	ODCC5	ODCC4	epodo	-	-	_	XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

SYSTEM CONTROL REGISTER MAP **TABLE 3-33:**

ן ן ן	;	5)	1)			•	•										
File Name Addr Bit 15 Bit 14 Bit 13	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 Bit 9 Bit 8	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	0740 TRAPR IOPUWR	I	I	1	1	CM	VREGS	CM VREGS EXTR SWR SWDTEN WDTO SLEEP IDLE	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(1)
OSCCON 0742	0742	1		COSC<2:0>	^C	I	ž	NOSC<2:0>		CLKLOCK IOLOCK LOCK	IOLOCK	LOCK	I	CF	Ι	- LPOSCEN OSWEN	OSWEN	0300 (2)
CLKDIV 0744 ROI	0744	ROI		DOZE<2:0>	^(DOZEN	FR	FRCDIV<2:0>	٨	PLLPOS	PLLPOST<1:0>	I		<u>a</u>	PLLPRE<4::0>	^ 0::		0040
PLLFBD 0746	0746	1	Ι	Ι	1	I	ı	1				P	PLLDIV<8:0>					0030
OSCTUN 0748	0748	I	I	Ι	Ι	Ι	-	_	I	Ι	Ι			TUN	TUN<5:0>			0000
ACI KCON 074A	0744	ı	I	SELACLK	SELACLK AOSCMD<1:0>	<1:0>	APS	APSTSCLR<2:0>	<0	ASRCSEL	ı	1	-	_	I	I	I	0000

—= unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset, Legend: Note 1:

RCON register Reset values dependent on type of Reset. OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

SECURITY REGISTER MAP⁽¹⁾ **TABLE 3-34:**

All	0.0	00	
All	0000	0000	
Bit 0	RL_BSR 0	RL_SSR	
Bit 1	IR_BSR	IW_SSR IR_SSR RL_SSR	
Bit 2	IW_BSR	IW_SSR	
Bit 3	1	I	
Bit 4	1	I	
Bit 5	1	_	
Bit 6	1	_	
Bit 7	1	I	
Bit 8	1		
Bit 9	1		
Bit 10	1	_	
Bit 11	I	1	١.
Bit 12	I	Ι	
Bit 13 Bit 12	I	Ι	٠
Bit 14	1	_	
Bit 15	1	Ι	
Addr	0220	0752	
File Name	BSRAM	SSRAM	

x = unknown value on Reset, — = unimplemented, read as 'o'. Reset values are shown in hexadecimal. This register is not present in devices with 4K RAM and 32K Flash memory. x = unknown value on Reset,

NVM REGISTER MAP 3.35 TABLE

IABEL 3-33. NVIN NEGISTEN MAI		IN VIVI	100															
File Name	Addr	Bit 15	Bit 14	File Name Addr Bit 15 Bit 14 Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0920	WR	WR WREN	WRERR	I	I	I	I	I	I	ERASE	I	I		NVMOP<3:0	P<3:0>		0000
NVMKEY	9920	_	_	-	-	_	-	_	_				NVMKEY<7:0:	Y<7:0>				0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend:

PMD REGISTER MAP TABLE 3-36:

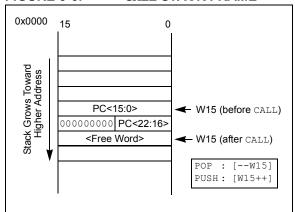
ile Name	Addr	Bit 15	Bit 14	Bit 13	File Name Addr Bit 15 Bit 14 Bit 13 Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0220	TSMD	T4MD	T3MD	0770 T5MD T4MD T3MD T2MD T1MD	T1MD	ı	1	DCIMD	DCIMD I2C1MD	UZMD	U1MD SPI2MD	SPIZMD	SPI1MD	I	C1MD	AD1MD	0000
PMD2	0772	0772 IC8MD IC7MD	IC7MD	I	I	I	I	IC2MD IC1MD	IC1MD	I	_	ı	Ι	OC4MD	OC3MD	OC4MD OC3MD OC2MD OC1MD	_	0000
PMD3	4770	Ι	_	I	I	I	CMPMD	RTCCMD	PMPMD	CMPMD RTCCMD PMPMD CRCMD DAC1MD	DAC1MD	ı	Ι	_	I	Ι	I	0000

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. x = unknown value on Reset,Legend:

3.2.7 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 3-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 3-6: CALL STACK FRAME

3.2.8 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 3-1 for an overview of the BSRAM and SSRAM SFRs.

3.3 Instruction Addressing Modes

The addressing modes shown in Table 3-37 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

3.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the ${\tt MUL}$ instruction), which writes the result to a register or register pair. The ${\tt MOV}$ instruction allows additional flexibility and can access the entire data space.

3.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function > Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- · Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 3-37: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

3.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- · Register Direct
- · Register Indirect
- · Register Indirect Post-modified
- · Register Indirect Pre-modified
- · Register Indirect with Register Offset (Indexed)
- · Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

3.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

3.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

3.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

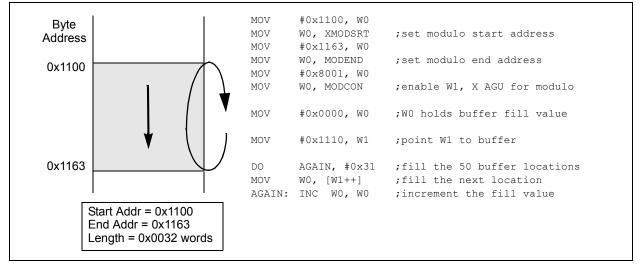
3.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 3-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

3.4.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 3-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 3-7: MODULO ADDRESSING OPERATION EXAMPLE

3.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note:

The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

3.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

3.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

 BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)

- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:

All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:

Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the X WAGU and X WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

FIGURE 3-8: BIT-REVERSED ADDRESS EXAMPLE

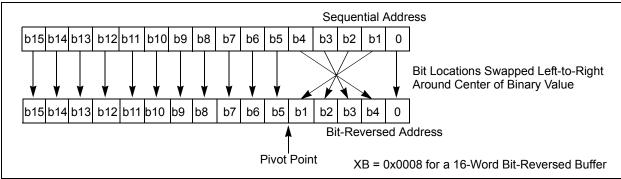


TABLE 3-38: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	ss			Bit-Rev	ersed Ac	Idress
А3	A2	A 1	Α0	Decimal	А3	A2	A 1	Α0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

3.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

3.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

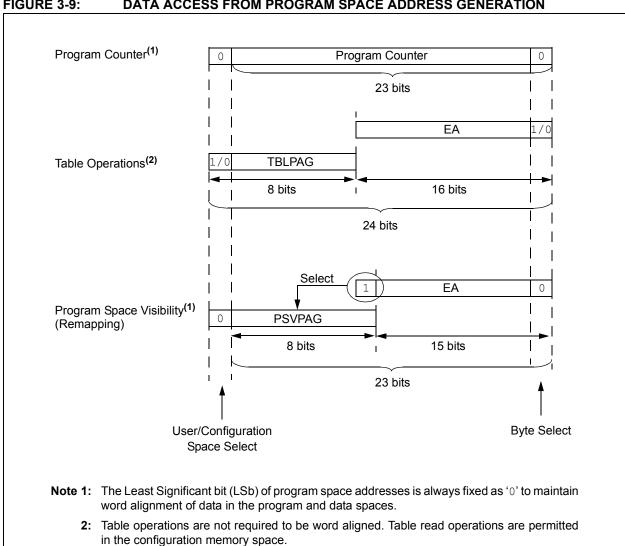

Table 3-39 and Figure 3-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

TABLE 3-39: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Type	Access		Prograr	n Space A	Address	
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0		PC<22:1>	,	0
(Code Execution)			0xx xxxx x	xxx xxx	xxxx xxx0	
TBLRD/TBLWT	User	ТВ	LPAG<7:0>		Data EA<15:0>	
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xx	xx xxxx xxxx	
	Configuration	ТВ	LPAG<7:0>		Data EA<15:0>	
		1	xxx xxxx	XXXX X	xxx xxxx xxxx	
Program Space Visibility	User	0	PSVPAG<7	':0>	Data EA<14:	0>(1)
(Block Remap/Read)		0	XXXX XXXX	ζ	xxx xxxx xxxx	XXXX

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 59

DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION FIGURE 3-9:

3.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 4.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

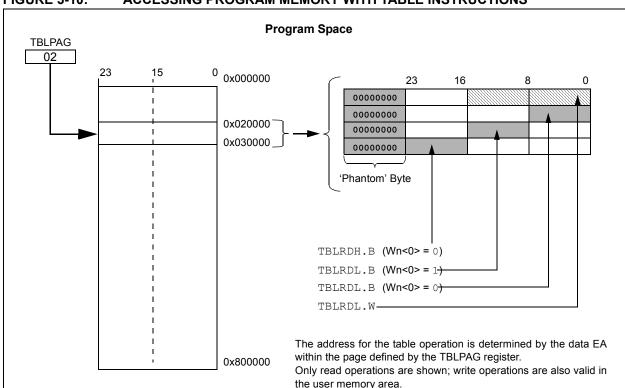


FIGURE 3-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 61

3.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 3-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop allows the instruction using PSV to access data, to execute in a single cycle.

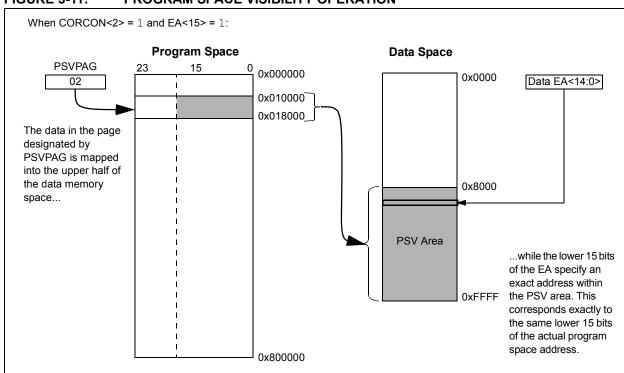


FIGURE 3-11: PROGRAM SPACE VISIBILITY OPERATION

4.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 5. Flash Programming" (DS70191), which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

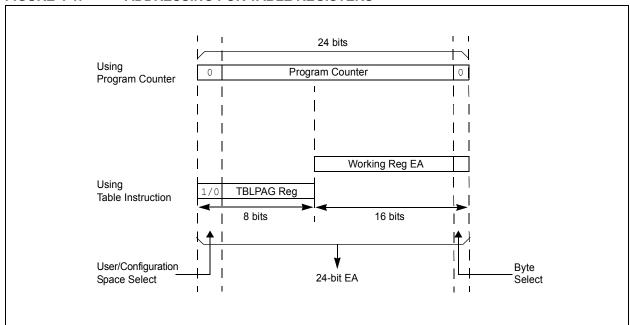
Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGC1/PGD1, PGC2/PGD2 or PGC3/PGD3), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal

controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


4.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 4-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 63

4.2 RTSP Operation

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 29-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of ${\tt TBLWT}$ instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 ${\tt TBLWTL}$ and ${\tt TBLWTH}$ instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

4.3 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 4-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 4.4** "**Programming Operations**" for further details.

4.4 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 4 ms in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

REGISTER 4-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	ERASE	_	_		NVMOF	² <3:0> ⁽²⁾	
bit 7							bit 0

Legend:	SO = Settable only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 WR: Write Control bit

1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete

0 = Program or erase operation is complete and inactive

bit 14 WREN: Write Enable bit

1 = Enable Flash program/erase operations

0 = Inhibit Flash program/erase operations

bit 13 WRERR: Write Sequence Error Flag bit

1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit)

0 = The program or erase operation completed normally

bit 12-7 Unimplemented: Read as '0'

bit 6 **ERASE:** Erase/Program Enable bit

1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command

0 = Perform the program operation specified by NVMOP<3:0> on the next WR command

bit 5-4 **Unimplemented:** Read as '0'

bit 3-0 **NVMOP<3:0>:** NVM Operation Select bits⁽²⁾

If ERASE = 1:

1111 = Memory bulk erase operation

1110 = Reserved

1101 = Erase General Segment

1100 = Erase Secure Segment

1011 = Reserved

0011 = No operation

0010 = Memory page erase operation

0001 = No operation

0000 = Erase a single Configuration register byte

If ERASE = 0:

1111 = No operation

1110 = Reserved

1101 = No operation

1100 = No operation

1011 = Reserved

0011 = Memory word program operation

0010 = No operation

0001 = Memory row program operation

0000 = Program a single Configuration register byte

Note 1: These bits can only be reset on POR.

2: All other combinations of NVMOP<3:0> are unimplemented.

REGISTER 4-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
NVMKEY<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

4.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- Read eight rows of program memory (512 instructions) and store in data RAM.
- Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 4-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 4-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 4-3.

EXAMPLE 4-1: ERASING A PROGRAM MEMORY PAGE

```
; Set up NVMCON for block erase operation
             #0x4042, W0
       MOV
              W0, NVMCON
       MOV
                                            ; Initialize NVMCON
; Init pointer to row to be ERASED
       MOV
             #tblpage(PROG ADDR), W0
       MOV
            WO, TBLPAG
                                           ; Initialize PM Page Boundary SFR
              #tbloffset(PROG ADDR), W0
       VOM
                                           ; Initialize in-page EA[15:0] pointer
       TBLWTL WO, [WO]
                                            ; Set base address of erase block
                                            ; Block all interrupts with priority <7
       DISI
              #5
                                            ; for next 5 instructions
       MOV
              #0×55, W0
              WO, NVMKEY
                                            ; Write the 55 key
       MOV
       MOV
              #0xAA, W1
              W1, NVMKEY
                                            ; Write the AA key
       MOV
       BSET
              NVMCON, #WR
                                            ; Start the erase sequence
       NOP
                                            ; Insert two NOPs after the erase
       NOP
                                            : command is asserted
```

EXAMPLE 4-2: LOADING THE WRITE BUFFERS

```
; Set up NVMCON for row programming operations
           #0x4001, W0 ;

MO NVMCON ; Initialize NVMCON
       MOV
; Set up a pointer to the first program memory location to be written
; program memory selected, and writes enabled
      MOV #0x0000, W0 ;
MOV W0, TBLPAG ; Initialize PM Page Boundary SFR
MOV #0x6000, W0 ; An example program memory addres
                                       ; An example program memory address
; Perform the TBLWT instructions to write the latches
; 0th program word
             #LOW WORD 0, W2
      MOV
            #HIGH BYTE 0, W3
       TBLWTL W2, [W0]
                                       ; Write PM low word into program latch
       TBLWTH W3, [W0++]
                                       ; Write PM high byte into program latch
; 1st_program_word
      MOV #LOW_WORD_1, W2
       MOV
              #HIGH BYTE 1, W3
                                       ;
                                       ; Write PM low word into program latch
       TBLWTL W2, [W0]
       TBLWTH W3, [W0++]
                                       ; Write PM high byte into program latch
; 2nd program word
       MOV #LOW WORD 2, W2
            #HIGH BYTE 2, W3
       TBLWTL W2, [W0]
TRIWTH W3. [W0++]
                                      ; Write PM low word into program latch
       TBLWTH W3, [W0++]
                                       ; Write PM high byte into program latch
; 63rd program word
       MOV #LOW_WORD_31, W2
            #HIGH_BYTE_31, W3
       TBLWTL W2, [W0]
                                       ; Write PM low word into program latch
       TBLWTH W3, [W0++]
                                       ; Write PM high byte into program latch
```

EXAMPLE 4-3: INITIATING A PROGRAMMING SEQUENCE

```
DISI
                                 ; Block all interrupts with priority <7
                                 ; for next 5 instructions
MOV
       #0x55, W0
MOV
      WO, NVMKEY
                                ; Write the 55 key
       #0xAA, W1
       W1, NVMKEY
MOV
                               ; Write the AA key
     NVMCON, #WR
BSET
                               ; Start the erase sequence
NOP
                                ; Insert two NOPs after the
NOP
                                 ; erase command is asserted
```

5.0 RESETS

Note:

This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 8. Reset" (DS70192), which is available from the Microchip website (www.microchip.com).

The Reset module combines all reset <u>sources</u> and controls the device Master Reset Signal, <u>SYSRST</u>. The following is a list of device Reset sources:

· POR: Power-on Reset

· BOR: Brown-out Reset

MCLR: Master Clear Pin Reset

• SWR: RESET Instruction

· WDTO: Watchdog Timer Reset

· CM: Configuration Mismatch Reset

· TRAPR: Trap Conflict Reset

· IOPUWR: Illegal Condition Device Reset

- Illegal Opcode Reset

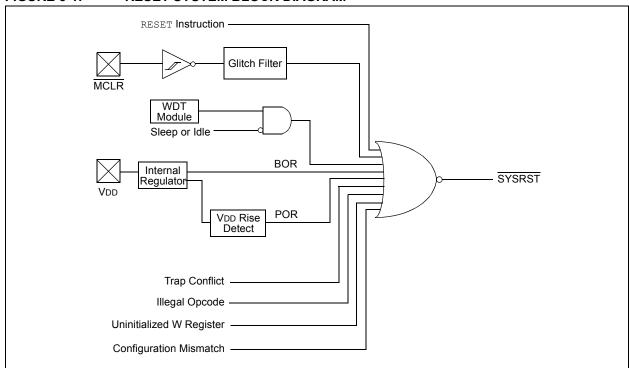
- Uninitialized W Register Reset

- Security Reset

A simplified block diagram of the Reset module is shown in Figure 5-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or **Section 2.0 "CPU"** of this manual for register Reset states.


All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 5-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 5-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 5-1: RCON: RESET CONTROL REGISTER⁽¹⁾

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	_	_	_	_	CM	VREGS
bit 15 bit 8							

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 TRAPR: Trap Reset Flag bit

1 = A Trap Conflict Reset has occurred0 = A Trap Conflict Reset has not occurred

bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit

1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an

Address Pointer caused a Reset

0 = An illegal opcode or uninitialized W Reset has not occurred

bit 13-10 **Unimplemented:** Read as '0'

bit 9 CM: Configuration Mismatch Flag bit

1 = A configuration mismatch Reset has occurred.

0 = A configuration mismatch Reset has NOT occurred.

bit 8 VREGS: Voltage Regulator Standby During Sleep bit

1 = Voltage regulator is active during Sleep

0 = Voltage regulator goes into Standby mode during Sleep

bit 7 **EXTR:** External Reset (MCLR) Pin bit

1 = A Master Clear (pin) Reset has occurred

0 = A Master Clear (pin) Reset has not occurred

bit 6 **SWR:** Software Reset (Instruction) Flag bit

1 = A RESET instruction has been executed

0 = A RESET instruction has not been executed

bit 5 **SWDTEN:** Software Enable/Disable of WDT bit⁽²⁾

1 = WDT is enabled

0 = WDT is disabled

bit 4 WDTO: Watchdog Timer Time-out Flag bit

1 = WDT time-out has occurred

0 = WDT time-out has not occurred

bit 3 SLEEP: Wake-up from Sleep Flag bit

1 = Device has been in Sleep mode

0 = Device has not been in Sleep mode

bit 2 **IDLE:** Wake-up from Idle Flag bit

1 = Device was in Idle mode

0 = Device was not in Idle mode

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 5-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 1

BOR: Brown-out Reset Flag bit

1 = A Brown-out Reset has occurred

0 = A Brown-out Reset has not occurred

bit 0 POR: Power-on Reset Flag bit

1 = A Power-up Reset has occurred0 = A Power-up Reset has not occurred

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 71

5.1 System Reset

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family of devices have two types of Reset:

- · Cold Reset
- · Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source.

A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 5-2.

 POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.

- BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures that the voltage regulator output becomes stable.
- 3. **PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 5-1. Refer to Section 8.0 "Oscillator Configuration" for more information.
- When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset address, which redirects program execution to the appropriate start-up routine.
- The Fail-safe clock monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

TABLE 5-1: OSCILLATOR DELAY

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd	_	_	Toscd
FRCPLL	Toscd	_	TLOCK	Toscd + Tlock
XT	Tosco	Tost	_	Toscd + Tost
HS	Toscd	Tost	_	Toscd + Tost
EC	_	_	_	_
XTPLL	Tosco	Tost	TLOCK	Toscd + Tost + Tlock
HSPLL	Toscd	Tost	TLOCK	Toscd + Tost + Tlock
ECPLL	_	_	TLOCK	TLOCK
SOSC	Toscd	Tost	_	Toscd + Tost
LPRC	Toscd	_	_	Tosco

- Note 1: Toscd = Oscillator Start-up Delay (1.1 μ s max for FRC, 70 μ s max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.
 - 2: Tost = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, Tost = 102.4 μ s for a 10 MHz crystal and Tost = 32 ms for a 32 kHz crystal.
 - 3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

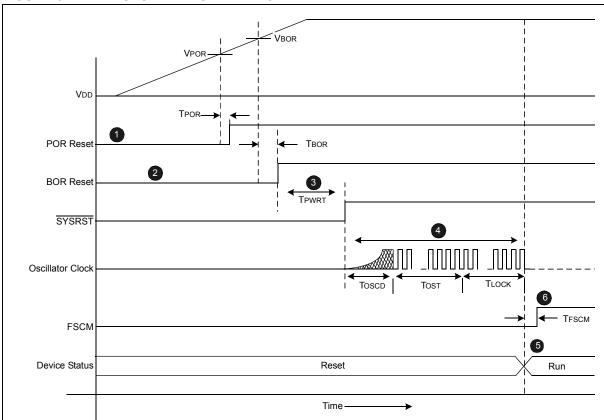


FIGURE 5-2: SYSTEM RESET TIMING

- Note 1: POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.
 - 2: BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.
 - 3: **PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
 - **4: Oscillator Delay:** The total delay for the clock to be ready for various clock source selections are given in Table 5-1. Refer to **Section 8.0 "Oscillator Configuration"** for more information.
 - **5:** When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the reset address, which redirects program execution to the appropriate start-up routine.
 - **6:** The Fail-safe clock monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 73

TABLE 5-2: OSCILLATOR DELAY

Symbol	Parameter	Value		
VPOR	POR threshold	1.8V nominal		
TPOR	POR extension time	30 μs maximum		
VBOR	BOR threshold	2.5V nominal		
TBOR	BOR extension time	100 μs maximum		
TPWRT	Programmable power-up time delay	0-128 ms nominal		
TFSCM	Fail-safe Clock Monitor Delay	900 μs maximum		

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time Power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters within specification.

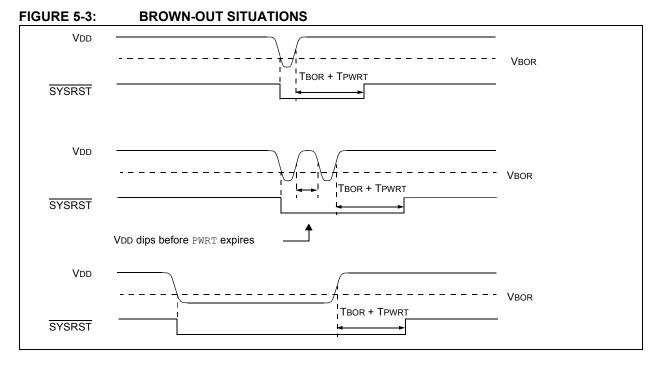
5.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 29.0 "Electrical Characteristics" for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

5.2.1 Brown-out Reset (BOR) and Power-up timer (PWRT)


The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 26.0 "Special Features"** for further details.

Figure 5-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

5.3 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 29.0 "Electrical Characteristics" for minimum pulse width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

5.3.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the $\overline{\text{MCLR}}$ pin to Reset the device when the rest of system is Reset.

5.3.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

5.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the software Reset.

5.5 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 26.4** "**Watchdog Timer (WDT)**" for more information on Watchdog Reset.

5.6 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 6.0 "Interrupt Controller"** for more information on trap conflict Resets.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 75

5.7 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control (RCON<9>) register is set to indicate the configuration mismatch Reset. Refer to **Section 10.0** "I/O Ports" for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

5.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- · Illegal Opcode Reset
- · Uninitialized W Register Reset
- · Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

5.8.0.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

5.8.0.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

5.8.0.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 26.8 "Code Protection and CodeGuard™ Security" for more information on Security Reset.

5.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 5-3 provides a summary of the reset flag bit operation.

TABLE 5-3: RESET FLAG BIT OPERATION

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR,BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR,BOR
CM (RCON<9>)	Configuration Mismatch	POR,BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR,BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR,BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR,BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR,BOR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	

Note: All Reset flag bits can be set or cleared by user software.

6.0 INTERRUPT CONTROLLER

This data sheet summarizes the features Note: dsPIC33FJ32GP302/304, the dsPIC33FJ64GPX02/X04, dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section (DS70184), Interrupts" which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- · Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

6.1 Interrupt Vector Table

The Interrupt Vector Table (IVT), shown in Figure 6-1, resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices implement up to 53 unique interrupts and five nonmaskable traps. These are summarized in Table 6-1.

6.1.1 ALTERNATE INTERRUPT VECTOR

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 6-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

6.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 77

FIGURE 6-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 INTERRUPT VECTOR TABLE

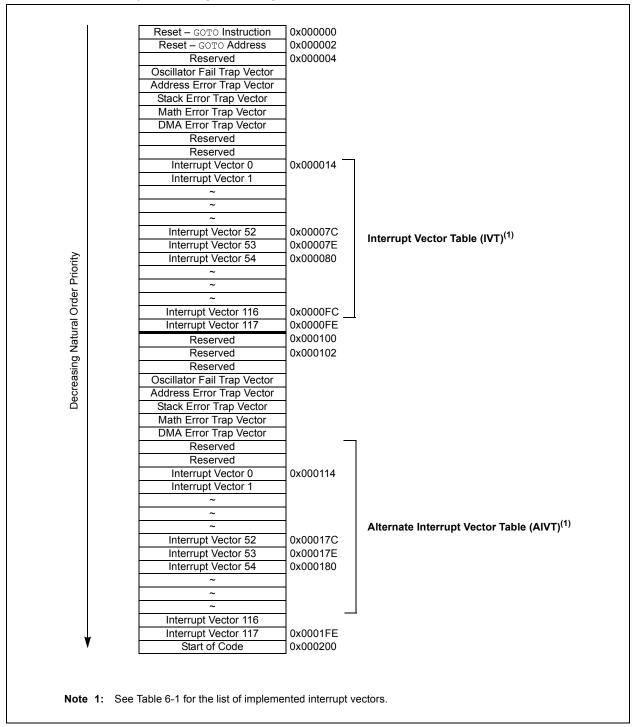


TABLE 6-1: INTERRUPT VECTORS

TABLE 6-1:	: INTERRUPT VECTORS					
Vector Number	IVT Address	AIVT Address	Interrupt Source			
0	0x000004	0x000104	Reserved			
1	0x000006	0x000106	Oscillator Failure			
2	800000x0	0x000108	Address Error			
3	0x00000A	0x00010A	Stack Error			
4	0x00000C	0x00010C	Math Error			
5	0x00000E	0x00010E	DMA Error			
6	0x000010	0x000110	Reserved			
7	0x000012	0x000112	Reserved			
8	0x000014	0x000114	INT0 – External Interrupt 0			
9	0x000016	0x000116	IC1 – Input Compare 1			
10	0x000018	0x000118	OC1 – Output Compare 1			
11	0x00001A	0x00011A	T1 – Timer1			
12	0x00001C	0x00011C	DMA0 – DMA Channel 0			
13	0x00001E	0x00011E	IC2 – Input Capture 2			
14	0x000020	0x000120	OC2 – Output Compare 2			
15	0x000022	0x000122	T2 – Timer2			
16	0x000024	0x000124	T3 – Timer3			
17	0x000026	0x000126	SPI1E – SPI1 Error			
18	0x000028	0x000128	SPI1 – SPI1 Transfer Done			
19	0x00002A	0x00012A	U1RX – UART1 Receiver			
20	0x00002C	0x00012C	U1TX – UART1 Transmitter			
21	0x00002E	0x00012E	ADC1 – ADC 1			
22	0x000030	0x000130	DMA1 – DMA Channel 1			
23	0x000032	0x000132	Reserved			
24	0x000034	0x000134	SI2C1 – I2C1 Slave Events			
25	0x000036	0x000136	MI2C1 – I2C1 Master Events			
26	0x000038	0x000138	CM – Comparator Interrupt			
27	0x00003A	0x00013A	CN – Change Notification Interrupt			
28	0x00003C	0x00013C	INT1 – External Interrupt 1			
29	0x00003E	0x00013E	Reserved			
30	0x000040	0x000140	IC7 – Input Capture 7			
31	0x000042	0x000142	IC8 – Input Capture 8			
32	0x000044	0x000144	DMA2 – DMA Channel 2			
33	0x000046	0x000146	OC3 – Output Compare 3			
34	0x000048	0x000148	OC4 – Output Compare 4			
35	0x00004A	0x00014A	T4 – Timer4			
36	0x00004C	0x00014C	T5 – Timer5			
37	0x00004E	0x00014E	INT2 – External Interrupt 2			
38	0x000050	0x000150	U2RX – UART2 Receiver			
39	0x000052	0x000152	U2TX – UART2 Transmitter			
40	0x000054	0x000154	SPI2E – SPI2 Error			
41	0x000056	0x000156	SPI2 – SPI2 Transfer Done			
42	0x000058	0x000158	C1RX – ECAN1 RX Data Ready			
43	0x00005A	0x00015A	C1 – ECAN1 Event			
44	0x00005C	0x00015C	DMA3 – DMA Channel 3			
45	0x00005E	0x00015E	Reserved			
46	0x000060	0x000160	Reserved			

TABLE 6-1: INTERRUPT VECTORS (CONTINUED)

Vector Number	IVT Address	AIVT Address	Interrupt Source		
47	0x000062	0x000162	Reserved		
48	0x000064	0x000164	Reserved		
49	0x000066	0x000166	Reserved		
50	0x000068	0x000168	Reserved		
51	0x00006A	0x00016A	Reserved		
52	0x00006C	0x00016C	Reserved		
53	0x00006E	0x00016E	PMP – Parallel Master Port		
54	0x000070	0x000170	DMA – DMA Channel 4		
55	0x000072	0x000172	Reserved		
56	0x000074	0x000174	Reserved		
57	0x000076	0x000176	Reserved		
58	0x000078	0x000178	Reserved		
59	0x00007A	0x00017A	Reserved		
60	0x00007C	0x00017C	Reserved		
61	0x00007E	0x00017E	Reserved		
62	0x000080	0x000180	Reserved		
63	0x000082	0x000182	Reserved		
64	0x000084	0x000184	Reserved		
65	0x000086	0x000186	Reserved		
66	0x000088	0x000188	Reserved		
67	0x00008A	0x00018A	DCIE – DCI Error		
68	0x00008C	0x00018C	DCI – DCI Transfer Done		
69	0x00008E	0x00018E	DMA5 – DMA Channel 5		
70	0x000090	0x000190	RTCC – Real Time Clock		
71	0x000092	0x000192	Reserved		
72	0x000094	0x000194	Reserved		
73	0x000096	0x000196	U1E – UART1 Error		
74	0x000098	0x000198	U2E – UART2 Error		
75	0x00009A	0x00019A	CRC – CRC Generator Interrupt		
76	0x00009C	0x00019C	DMA6 – DMA Channel 6		
77	0x00009E	0x00019E	DMA7 – DMA Channel 7		
78	0x0000A0	0x0001A0	C1TX – ECAN1 TX Data Request		
79	0x0000A2	0x0001A2	Reserved		
80	0x0000A4	0x0001A4	Reserved		
81	0x0000A6	0x0001A6	Reserved		
82	0x0000A8	0x0001A8	Reserved		
83	0x0000AA	0x0001AA	Reserved		
84	0x0000AC	0x0001AC	Reserved		
85	0x0000AE	0x0001AE	Reserved		
86	0x0000B0	0x0001B0	DAC1R – DAC1 Right Data Request		
87	0x0000B2	0x0001B2	DAC1L – DAC1 Left Data Request		
88-126	0x0000B4-0x0000FE	0x0001B4-0x0001FE	Reserved		

6.3 Interrupt Control and Status Registers

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

6.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

6.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

6.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

6.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

6.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 6-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

6.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 6-1 through Register 6-31 in the following pages.

REGISTER 6-1: SR: CPU STATUS REGISTER⁽¹⁾

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	ОВ	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:

C = Clear only bit R = Readable bit U = Unimplemented bit, read as '0'

S = Set only bit W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

110 = CPU Interrupt Priority Level is 6 (14)

101 = CPU Interrupt Priority Level is 5 (13)

100 = CPU Interrupt Priority Level is 4 (12)

011 = CPU Interrupt Priority Level is 3 (11)

010 = CPU Interrupt Priority Level is 2 (10)

001 = CPU Interrupt Priority Level is 1 (9)

000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 2-1: "SR: CPU STATUS Register".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 6-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	_	_	US	EDT		DL<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clear only bit				
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set		
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit, read as '0'			

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 2-2: "CORCON: CORE Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 6-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	NSTDIS: Interrupt Nesting Disable bit
	1 = Interrupt nesting is disabled
	0 = Interrupt nesting is enabled
bit 14	OVAERR: Accumulator A Overflow Trap Flag bit
	1 = Trap was caused by overflow of Accumulator A
	0 = Trap was not caused by overflow of Accumulator A
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit
	1 = Trap was caused by overflow of Accumulator B0 = Trap was not caused by overflow of Accumulator B
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Enable bit
	1 = Trap was caused by catastrophic overflow of Accumulator A0 = Trap was not caused by catastrophic overflow of Accumulator A
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Enable bit
	1 = Trap was caused by catastrophic overflow of Accumulator B
	0 = Trap was not caused by catastrophic overflow of Accumulator B
bit 10	OVATE: Accumulator A Overflow Trap Enable bit
	1 = Trap overflow of Accumulator A0 = Trap disabled
bit 9	OVBTE: Accumulator B Overflow Trap Enable bit
	1 = Trap overflow of Accumulator B
	0 = Trap disabled
bit 8	COVTE: Catastrophic Overflow Trap Enable bit
	1 = Trap on catastrophic overflow of Accumulator A or B enabled0 = Trap disabled
bit 7	SFTACERR: Shift Accumulator Error Status bit
	1 = Math error trap was caused by an invalid accumulator shift
	0 = Math error trap was not caused by an invalid accumulator shift
bit 6	DIV0ERR: Arithmetic Error Status bit
	1 = Math error trap was caused by a divide by zero
	0 = Math error trap was not caused by a divide by zero
bit 5	DMACERR: DMA Controller Error Status bit
	1 = DMA controller error trap has occurred
b:4 4	0 = DMA controller error trap has not occurred
bit 4	MATHERR: Arithmetic Error Status bit
	1 = Math error trap has occurred0 = Math error trap has not occurred
	o main oner dap has not occurred

REGISTER 6-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3

ADDRERR: Address Error Trap Status bit

1 = Address error trap has occurred

0 = Address error trap has not occurred

bit 2

STKERR: Stack Error Trap Status bit

1 = Stack error trap has occurred

0 = Stack error trap has not occurred

bit 1

OSCFAIL: Oscillator Failure Trap Status bit

1 = Oscillator failure trap has occurred

0 = Oscillator failure trap has not occurred

bit 0 **Unimplemented:** Read as '0'

REGISTER 6-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	INT2EP	INT1EP	INT0EP
bit 7					•		bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ALTIVT: Enable Alternate Interrupt Vector Table bit

1 = Use alternate vector table

0 = Use standard (default) vector table

bit 14 DISI: DISI Instruction Status bit

1 = DISI instruction is active 0 = DISI instruction is not active

bit 13-3 **Unimplemented:** Read as '0'

bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14 **DMA1IF:** DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 13 AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 12 **U1TXIF:** UART1 Transmitter Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 11 U1RXIF: UART1 Receiver Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 10 SPI1IF: SPI1 Event Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 9 SPI1EIF: SPI1 Error Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 8 T3IF: Timer3 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 7 T2IF: Timer2 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 6 OC2IF: Output Compare Channel 2 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 5 IC2IF: Input Capture Channel 2 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 4 DMA0IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

T1IF: Timer1 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 3

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 6-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2 OC1IF: Output Compare Channel 1 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 INT0IF: External Interrupt 0 Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

REGISTER 6-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 U2TXIF: UART2 Transmitter Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 14 U2RXIF: UART2 Receiver Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 13 INT2IF: External Interrupt 2 Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 12 **T5IF:** Timer5 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 11 **T4IF:** Timer4 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 10 OC4IF: Output Compare Channel 4 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 9 OC3IF: Output Compare Channel 3 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 8 DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 7 IC8IF: Input Capture Channel 8 Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

IC7IF: Input Capture Channel 7 Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 5 **Unimplemented:** Read as '0'

bit 4 INT1IF: External Interrupt 1 Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 3 CNIF: Input Change Notification Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 6

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 6-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 2 CMIF: Comparator Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

REGISTER 6-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	DMA4IF	PMPIF	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 13 PMPIF: Parallel Master Port Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 12-5 Unimplemented: Read as '0'

bit 4 DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 3 C1IF: ECAN1 Event Interrupt Flag Status bit⁽¹⁾

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 2 C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit⁽¹⁾

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 1 SPI2IF: SPI2 Event Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 0 SPI2EIF: SPI2 Error Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

Note 1: Interrupts disabled on devices without ECAN™ modules

REGISTER 6-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
_	RTCIF	DMA5IF	DCIIF	DCIEIF	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14 RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 13 DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 12 DCIIF: DCI Event Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 11 DCIEIF: DCI Error Interrupt Flag Status bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

bit 10-0 **Unimplemented:** Read as '0'

REGISTER 6-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
_	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Rit is set	'0' = Rit is cleared	y = Rit is unknown

bit 15	DAC1LIF: DAC Left Channel Interrupt Flag Status bit ⁽²⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 14	DAC1RIF: DAC Right Channel Interrupt Flag Status bit (2)
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-7	Unimplemented: Read as '0'
bit 6	C1TXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 5	DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4	DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 3	CRCIF: CRC Generator Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 2	U2EIF: UART2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	U1EIF: UART1 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: Interrupts disabled on devices without ECAN™ modules.

2: Interrupts disabled on devices without Audio DAC modules.

REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 13	AD1IE: ADC1 Conversion Complete Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 12	U1TXIE: UART1 Transmitter Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit
	1 = Interrupt request enabled
hit 10	0 = Interrupt request not enabled
bit 10	SPI1IE: SPI1 Event Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 9	SPI1EIE: SPI1 Error Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 8	T3IE: Timer3 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 7	T2IE: Timer2 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
hit G	
bit 6	OC2IE: Output Compare Channel 2 Interrupt Enable bit 1 = Interrupt request enabled
	0 = Interrupt request enabled
bit 5	IC2IE: Input Capture Channel 2 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 4	DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 3	T1IE: Timer1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

REGISTER 6-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2 OC1IE: Output Compare Channel 1 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 0 INTOIE: External Interrupt 0 Flag Status bit

1 = Interrupt request enabled0 = Interrupt request not enabled

REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	U2TXIE: UART2 Transmitter Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 14	U2RXIE: UART2 Receiver Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 13	INT2IE: External Interrupt 2 Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 12	T5IE: Timer5 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 11	T4IE: Timer4 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 10	OC4IE: Output Compare Channel 4 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 9	OC3IE: Output Compare Channel 3 Interrupt Enable bit
	1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 8	DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit
Dit 0	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 7	IC8IE: Input Capture Channel 8 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 6	IC7IE: Input Capture Channel 7 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 5	Unimplemented: Read as '0'
bit 4	INT1IE: External Interrupt 1 Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 3	CNIE: Input Change Notification Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

REGISTER 6-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2 CMIE: Comparator Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 1 MI2C1IE: I2C1 Master Events Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 0 SI2C1IE: I2C1 Slave Events Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

REGISTER 6-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	DMA4IE	PMPIE	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
bit 7							bit 0

U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set

Legend:

R = Readable bit

'0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit

W = Writable bit

1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 13 PMPIE: Parallel Master Port Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 12-5 Unimplemented: Read as '0'

bit 4 DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request has enabled

C1IE: ECAN1 Event Interrupt Enable bit(1) bit 3

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 2 C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit(1)

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 1 SPI2IE: SPI2 Event Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 0 SPI2EIE: SPI2 Error Interrupt Enable bit

> 1 = Interrupt request enabled 0 = Interrupt request not enabled

Note 1: Interrupts disabled on devices without ECAN™ modules

REGISTER 6-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
_	RTCIE	DMA5IE	DCIIE	DCIEIE	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14 RTCIE: Real-Time Clock/Calendar Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 13 DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 12 DCIIE: DCI Event Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 11 DCIEIE: DCI Error Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 10-0 **Unimplemented:** Read as '0'

REGISTER 6-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
_	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 DAC1LIE: DAC Left Channel Interrupt Enable bit (2)

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 14 DAC1RIE: DAC Right Channel Interrupt Enable bit⁽²⁾

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 13-7 Unimplemented: Read as '0'

bit 6 C1TXIE: ECAN1 Receive Data Ready Interrupt Enable bit⁽¹⁾

1 = Interrupt request occurred0 = Interrupt request not occurred

bit 5 DMA7IE: DMA Channel 7 Data Transfer Complete Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 4 DMA6IE: DMA Channel 6 Data Transfer Complete Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 3 CRCIE: CRC Generator Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 2 **U2EIE:** UART2 Error Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 1 **U1EIE:** UART1 Error Interrupt Enable bit

1 = Interrupt request enabled0 = Interrupt request not enabled

bit 0 Unimplemented: Read as '0'

Note 1: Interrupts disabled on devices without ECAN™ modules

2: Interrupts disabled on devices without Audio DAC modules

REGISTER 6-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T1IP<2:0>		_		OC1IP<2:0>	
bit 15		_				_	bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC1IP<2:0>		_		INT0IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 T1IP<2:0>: Timer1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 **INT0IP<2:0>:** External Interrupt 0 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

REGISTER 6-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>		_		OC2IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC2IP<2:0>		_		DMA0IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 T2IP<2:0>: Timer2 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 Unimplemented: Read as '0'

bit 10-8 OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits bit 6-4

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

REGISTER 6-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U1RXIP<2:0>		_		SPI1IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		SPI1EIP<2:0>		_		T3IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 SPI1IP<2:0>: SPI1 Event Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 T3IP<2:0>: Timer3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

REGISTER 6-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		DMA1IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		AD1IP<2:0>		_		U1TXIP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-8 DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 **U1TXIP<2:0>:** UART1 Transmitter Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

REGISTER 6-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		CNIP<2:0>		_		CMIP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		MI2C1IP<2:0>		_		SI2C1IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 CNIP<2:0>: Change Notification Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 CMIP<2:0>: Comparator Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

REGISTER 6-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IC8IP<2:0>		_		IC7IP<2:0>	
bit 15							bit 8

U-0	U-1	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		INT1IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 **INT1IP<2:0>:** External Interrupt 1 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

_

001 = Interrupt is priority 1

REGISTER 6-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T4IP<2:0>		_		OC4IP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		OC3IP<2:0>		_		DMA2IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 **T4IP<2:0>:** Timer4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

REGISTER 6-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U2TXIP<2:0>		_		U2RXIP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>		_		T5IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 **U2TXIP<2:0>:** UART2 Transmitter Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 **INT2IP<2:0>:** External Interrupt 2 Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as '0'

bit 2-0 T5IP<2:0>: Timer5 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

REGISTER 6-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		C1IP<2:0> ⁽¹⁾	C	1RXIP<2:0> ⁽¹⁾)		
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		SPI2IP<2:0>		_		SPI2EIP<2:0>	
bit 7							bit 0

 Legend:
 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 15 Unimplemented: Read as '0' bit 14-12 C1IP<2:0>: ECAN1 Event Interrupt Priority bits(1) 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 11 Unimplemented: Read as '0' bit 10-8 C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits(1) 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 7 Unimplemented: Read as '0' bit 6-4 SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled bit 3 Unimplemented: Read as '0' bit 2-0 SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1

Note 1: Interrupts disabled on devices without ECAN™ modules

REGISTER 6-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		DMA3IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 **Unimplemented:** Read as '0'

bit 2-0 DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

001 = Interrupt is priority 1

REGISTER 6-25: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
_	_	_	_	_		DMA4IP<2:0>			
bit 15					<u> </u>				

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		PMPIP<2:0>		_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-8 DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 **PMPIP<2:0>:** Parallel Master Port Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 **Unimplemented:** Read as '0'

REGISTER 6-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		DCIEIP<2:0>		_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 DCIEIP<2:0>: DCI Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11-0 **Unimplemented:** Read as '0'

REGISTER 6-27: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_		RTCIP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		DMA5IP<2:0>		_		DCIIP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-8 RTCIP<2:0>: Real-Time Clock/Calendar Interrupt Flag Status bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as '0'

bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

.

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 DCIIP<2:0>: DCI Event Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

REGISTER 6-28: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		CRCIP<2:0>		_		U2EIP<2:0>	
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_		U1EIP<2:0>		_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 CRCIP<2:0>: CRC Generator Error Interrupt Flag Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 **U2EIP<2:0>:** UART2 Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 **U1EIP<2:0>:** UART1 Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 **Unimplemented:** Read as '0'

REGISTER 6-29: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	(C1TXIP<2:0> ⁽¹⁾)
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		DMA7IP<2:0>		_		DMA6IP<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits⁽¹⁾

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 **Unimplemented:** Read as '0'

bit 6-4 DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 **Unimplemented:** Read as '0'

bit 2-0 DMA6IP<2:0>: DMA Channel 6 Data Transfer Complete Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

.

001 = Interrupt is priority 1

Note 1: Interrupts disabled on devices without ECAN™ modules

REGISTER 6-30: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
_)AC1LIP<2:0> ⁽	1)	_	DAC1RIP<2:0> ⁽¹⁾		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	-	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 DAC1LIP<2:0>: DAC Left Channel Interrupt Flag Status bit⁽¹⁾

111 = Interrupt is priority 7 (highest priority interrupt)

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 **Unimplemented:** Read as '0'

bit 10-8 DAC1RIP<2:0>: DAC Right Channel Interrupt Flag Status bit⁽¹⁾

111 = Interrupt is priority 7 (highest priority interrupt)

•

•

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7-0 **Unimplemented:** Read as '0'

Note 1: Interrupts disabled on devices without Audio DAC modules.

REGISTER 6-31: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_		ILR<	3:0>	
bit 15							bit 8

U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8 **ILR:** New CPU Interrupt Priority Level bits

1111 = CPU Interrupt Priority Level is 15

•

.

0001 = CPU Interrupt Priority Level is 1

0000 = CPU Interrupt Priority Level is 0

bit 7 **Unimplemented:** Read as '0'

bit 6-0 **VECNUM:** Vector Number of Pending Interrupt bits

0111111 = Interrupt Vector pending is number 135

•

•

0000001 = Interrupt Vector pending is number 9

0000000 = Interrupt Vector pending is number 8

6.4 Interrupt Setup Procedures

6.4.1 INITIALIZATION

To configure an interrupt source at initialization:

- Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

6.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

6.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

6.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the ${\tt POP}$ instruction can be used to restore the previous SR value.

Note: Only user interrupts with a priority level of 7 or lower can be disabled. Trap sources (level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

7.0 DIRECT MEMORY ACCESS (DMA)

Note:

This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33F Family Reference Manual*, "Section 22. Direct Memory Access (DMA)" (DS70182), which is available from the Microchip website (www.microchip.com).

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 peripherals that can utilize DMA are listed in Table 7-1.

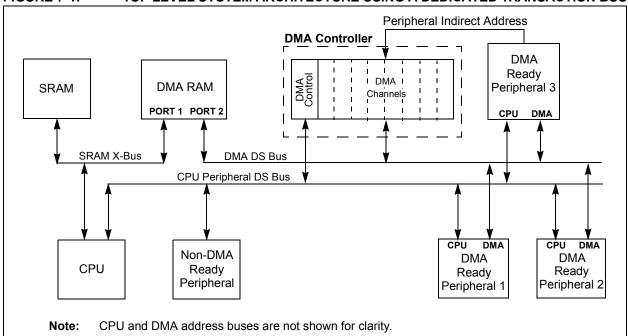
TABLE 7-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read From Peripheral	DMAxPAD Register Values to Write to Peripheral
INT0 – External Interrupt 0	0000000	_	_
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	_
OC1 – Output Compare 1 Data	0000010	_	0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data	0000010	_	0x0180 (OC1RS)
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	_
OC2 – Output Compare 2 Data	0000110	_	0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data	0000110	_	0x0186 (OC2RS)
TMR2 – Timer2	0000111	_	_
TMR3 – Timer3	0001000	_	_
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	_
UART1TX – UART1 Transmitter	0001100	_	0x0224 (U1TXREG)
ADC1 – ADC1 convert done	0001101	0x0300 (ADC1BUF0)	_
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	_
UART2TX – UART2 Transmitter	0011111	_	0x0234 (U2TXREG)
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	_
PMP – Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)
ECAN1 – TX Data Request	1000110	_	0x0442 (C1TXD)
DCI – Codec Transfer Done	0111100	0x0290 (RXBUF0	0x0298 (TXBUF0)
DAC1 – Right Data Output	1001110	_	0x03F6 (DAC1RDAT)
DAC2 – Left Data Output	1001111	_	0x03F8 (DAC1LDAT)

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 119

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.


The DMA controller supports the following features:

- · Eight DMA channels
- Register Indirect With Post-increment Addressing mode
- Register Indirect Without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- · Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 7-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

7.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMACS0 contains the DMA RAM and SFR write collision flags, XWCOLx and PWCOLx, respectively. DMACS1 indicates DMA channel and Ping-Pong mode status.

The DMAxCON, DMAxREQ, DMAxPAD and DMAxCNT are all conventional read/write registers. Reads of DMAxSTA or DMAxSTB reads the contents of the DMA RAM Address register. Writes to DMAxSTA or DMAxSTB write to the registers. This allows the user to determine the DMA buffer pointer value (address) at any time.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 7-1: DMAXCON: DMA CHANNEL x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	_	AMOD	E<1:0>	_	_	MODE	E<1:0>
bit 7							bit 0

bit 15 CHEN: Channel Enable bit

1 = Channel enabled 0 = Channel disabled

bit 14 SIZE: Data Transfer Size bit

1 = Byte 0 = Word

bit 13 **DIR**: Transfer Direction bit (source/destination bus select)

 ${\tt 1}$ = Read from DMA RAM address, write to peripheral address ${\tt 0}$ = Read from peripheral address, write to DMA RAM address

bit 12 HALF: Early Block Transfer Complete Interrupt Select bit

1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved

bit 11 NULLW: Null Data Peripheral Write Mode Select bit

1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)

0 = Normal operation

bit 10-6 **Unimplemented:** Read as '0'

bit 5-4 **AMODE<1:0>:** DMA Channel Operating Mode Select bits

11 = Reserved (acts as Peripheral Indirect Addressing mode)

10 = Peripheral Indirect Addressing mode

01 = Register Indirect without Post-Increment mode

00 = Register Indirect with Post-Increment mode

bit 3-2 **Unimplemented:** Read as '0'

bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits

11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)

10 = Continuous, Ping-Pong modes enabled

01 = One-Shot, Ping-Pong modes disabled

00 = Continuous, Ping-Pong modes disabled

REGISTER 7-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/W-0	U-0						
FORCE ⁽¹⁾	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_			II	RQSEL6<6:0>	(2)		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **FORCE**: Force DMA Transfer bit⁽¹⁾

1 = Force a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-7 **Unimplemented:** Read as '0'

bit 6-0 IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾

0000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ

Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced DMA transfer is complete.

2: Refer to Table 6-1 for a complete listing of IRQ numbers for all interrupt sources.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 123

REGISTER 7-3: DMAxSTA: DMA CHANNEL x RAM START ADDRESS REGISTER A(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STA<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STA<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 STA<15:0>: Primary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STA<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 7-4: DMAXSTB: DMA CHANNEL x RAM START ADDRESS REGISTER B(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STB<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STB<7:0>									
bit 7									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **STB<15:0>:** Secondary DMA RAM Start Address bits (source or destination)

Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the contents written to STB<15:0>. If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 7-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PAD<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PAD<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 7-6: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	CNT<	9:8> ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CNT<7:0>(2)									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 **Unimplemented:** Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

REGISTER 7-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| PWCOL7 | PWCOL6 | PWCOL5 | PWCOL4 | PWCOL3 | PWCOL2 | PWCOL1 | PWCOL0 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| XWCOL7 | XWCOL6 | XWCOL5 | XWCOL4 | XWCOL3 | XWCOL2 | XWCOL1 | XWCOL0 |
| bit 7 | | | | | | | bit 0 |

Legend:						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared $x = Bit$ is unknown			
L9 4E	DWOO!	• Observed 7 Desirely 2014	to O British Florida			
bit 15	PWCOL	7: Channel 7 Peripheral Wri	te Collision Flag bit			
	1 = Write	collision detected				

bit 14	PWCOL6: Channel 6 Peripheral Write Collision Flag bit
	1 = Write collision detected
	0 = No write collision detected

bit 13	PWCOL5: Channel 5 Peripheral Write Collision Flag bit
	1 - Write collision detected

1 = Write collision detected0 = No write collision detected

0 = No write collision detected

bit 12 **PWCOL4:** Channel 4 Peripheral Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 11 PWCOL3: Channel 3 Peripheral Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 10 PWCOL2: Channel 2 Peripheral Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 9 **PWCOL1:** Channel 1 Peripheral Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 8 **PWCOL0:** Channel 0 Peripheral Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 7 XWCOL7: Channel 7 DMA RAM Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 6 XWCOL6: Channel 6 DMA RAM Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 5 XWCOL5: Channel 5 DMA RAM Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 4 XWCOL4: Channel 4 DMA RAM Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

REGISTER 7-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3 XWCOL3: Channel 3 DMA RAM Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 2 XWCOL2: Channel 2 DMA RAM Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 1 XWCOL1: Channel 1 DMA RAM Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

bit 0 XWCOL0: Channel 0 DMA RAM Write Collision Flag bit

1 = Write collision detected0 = No write collision detected

REGISTER 7-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_	_	_	_		LSTC	H<3:0>	
bit 15							bit 8

| R-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PPST7 | PPST6 | PPST5 | PPST4 | PPST3 | PPST2 | PPST1 | PPST0 |
| bit 7 | | | | | | | bit 0 |

Legend:

bit 6

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-8 LSTCH<3:0>: Last DMA Channel Active bits

1111 = No DMA transfer has occurred since system Reset

1110-1000 = Reserved

0111 = Last data transfer was by DMA Channel 7

0110 = Last data transfer was by DMA Channel 6

0101 = Last data transfer was by DMA Channel 5

0100 = Last data transfer was by DMA Channel 4

0011 = Last data transfer was by DMA Channel 3

0010 = Last data transfer was by DMA Channel 2

0001 = Last data transfer was by DMA Channel 1

0000 = Last data transfer was by DMA Channel 0

bit 7 PPST7: Channel 7 Ping-Pong Mode Status Flag bit

1 = DMA7STB register selected 0 = DMA7STA register selected

PPST6: Channel 6 Ping-Pong Mode Status Flag bit

1 = DMA6STB register selected

0 = DMA6STA register selected

bit 5 PPST5: Channel 5 Ping-Pong Mode Status Flag bit

1 = DMA5STB register selected

0 = DMA5STA register selected

bit 4 PPST4: Channel 4 Ping-Pong Mode Status Flag bit

1 = DMA4STB register selected

0 = DMA4STA register selected

bit 3 PPST3: Channel 3 Ping-Pong Mode Status Flag bit

1 = DMA3STB register selected

0 = DMA3STA register selected

bit 2 PPST2: Channel 2 Ping-Pong Mode Status Flag bit

1 = DMA2STB register selected

0 = DMA2STA register selected

bit 1 PPST1: Channel 1 Ping-Pong Mode Status Flag bit

 $_1$ = DMA1STB register selected

0 = DMA1STA register selected

bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit

1 = DMA0STB register selected

0 = DMA0STA register selected

REGISTER 7-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
DSADR<15:8>								
bit 15							bit 8	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	R<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

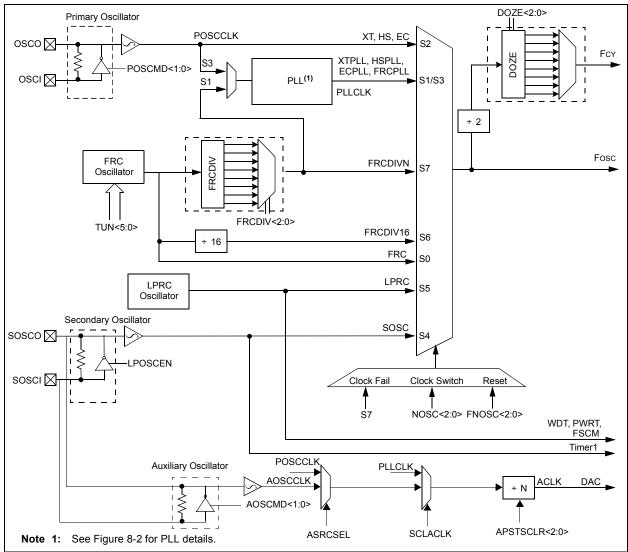
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

IOTES:	dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128G	PX02/X04
	NOTES:	

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04. dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section Oscillator" (DS70186), which is available the Microchip website (www.microchip.com).


The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 oscillator system provides:

External and internal oscillator options as clock sources

- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.
- An auxiliary crystal oscillator for Audio DAC

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 OSCILLATOR SYSTEM DIAGRAM

8.1 CPU Clocking System

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices provide seven system clock options:

- · Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- · Primary (XT, HS or EC) Oscillator
- · Primary Oscillator with PLL
- · Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- · FRC Oscillator with postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- Crystal (XT): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- High-Speed Crystal (HS): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- External Clock (EC): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The Low-Power RC (LPRC) internal oscillator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip PLL to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 8.1.4 "PLL Configuration"**.

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 26.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits. FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits. POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) Fosc is divided by 2 to generate the device instruction clock (FcY). FcY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 architecture.

Instruction execution speed or device operating frequency, Fcy, is given by:

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

8.1.3 AUXILIARY OSCILLATOR

The Auxiliary Oscillator (AOSC) can be used for peripherals that need to operate at a frequency unrelated to the system clock such as a Digital-to-Analog Converter (DAC).

The Auxiliary Oscillator can use one of the following as its clock source:

Crystal (XT): Crystal and ceramic resonators in the range of 3 Mhz to 10 Mhz. The crystal is connected to the SOCI and SOSCO pins.

High-Speed Crystal (HS): Crystals in the range of 10 to 40 MHz. The crystal is connected to the SOSCI and SOSCO pins.

External Clock (EC): External clock signal up to 64 Mhz. The external clock signal is directly applied to SOSCI pin.

8.1.4 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

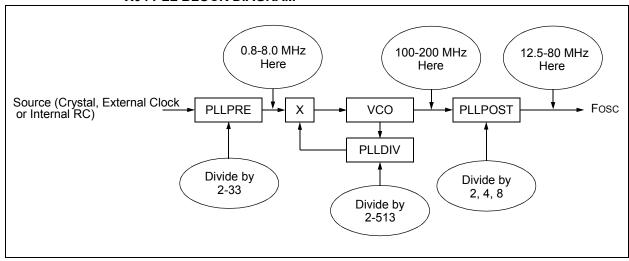
The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M,' by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2.' This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'Fosc' is given by:

EQUATION 8-2: Fosc CALCULATION

$$FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$$


For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL.

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then
 M = 32. This yields a VCO output of 5 x 32 = 160
 MHz, which is within the 100-200 MHz ranged
 needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 8-3: XT WITH PLL MODE EXAMPLE

$$FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right) = 40 \text{ MIPS}$$

FIGURE 8-2: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04 PLL BLOCK DIAGRAM

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 133

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	XX	110	1
Low-Power RC Oscillator (LPRC)	Internal	XX	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	XX	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	XX	001	1
Fast RC Oscillator (FRC)	Internal	XX	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

^{2:} This is the default oscillator mode for an unprogrammed (erased) device.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_		COSC<2:0>		_		NOSC<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN
bit 7							bit 0

Legend:	y = Value set from Configuration bits on POR				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 **Unimplemented:** Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits (read-only)

000 = Fast RC oscillator (FRC)

001 = Fast RC oscillator (FRC) with PLL

010 = Primary oscillator (XT, HS, EC)

011 = Primary oscillator (XT, HS, EC) with PLL

100 = Secondary oscillator (SOSC)

101 = Low-Power RC oscillator (LPRC)

110 = Fast RC oscillator (FRC) with Divide-by-16

111 = Fast RC oscillator (FRC) with Divide-by-n

bit 11 **Unimplemented:** Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits

000 = Fast RC oscillator (FRC)

001 = Fast RC oscillator (FRC) with PLL

010 = Primary oscillator (XT, HS, EC)

011 = Primary oscillator (XT, HS, EC) with PLL

100 = Secondary oscillator (SOSC)

101 = Low-Power RC oscillator (LPRC)

110 = Fast RC oscillator (FRC) with Divide-by-16

111 = Fast RC oscillator (FRC) with Divide-by-n

bit 7 CLKLOCK: Clock Lock Enable bit

If clock switching is enabled and FSCM is disabled, (FOSC<FCKSM> = 0b01)

1 = Clock switching is disabled, system clock source is locked

0 = Clock switching is enabled, system clock source can be modified by clock switching

bit 6 **IOLOCK:** Peripheral Pin Select Lock bit

1 = Peripherial pin select is locked, write to peripheral pin select registers not allowed

0 = Peripherial pin select is not locked, write to peripheral pin select registers allowed

bit 5 LOCK: PLL Lock Status bit (read-only)

1 = Indicates that PLL is in lock, or PLL start-up timer is satisfied

0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled

bit 4 Unimplemented: Read as '0'

bit 3 **CF:** Clock Fail Detect bit (read/clear by application)

1 = FSCM has detected clock failure

0 = FSCM has not detected clock failure

bit 2 Unimplemented: Read as '0'

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit

1 = Enable secondary oscillator0 = Disable secondary oscillator

bit 0 **OSWEN:** Oscillator Switch Enable bit

1 = Request oscillator switch to selection specified by NOSC<2:0> bits

0 = Oscillator switch is complete

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15							bit 8

R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOS	ST<1:0>	_	PLLPRE<4:0>				
bit 7			bit				

Legend:	y = Value set from Co	y = Value set from Configuration bits on POR				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 ROI: Recover on Interrupt bit

1 = Interrupts clears the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1

0 = Interrupts have no effect on the DOZEN bit

bit 14-12 DOZE<2:0>: Processor Clock Reduction Select bits

000 = Fcy/1

001 = Fcy/2

010 = Fcy/4

011 = Fcy/8 (default)

100 = Fcy/16

101 = Fcy/32

110 = Fcy/64

111 = Fcy/128

bit 11 **DOZEN:** DOZE Mode Enable bit⁽¹⁾

1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks

0 = Processor clock/peripheral clock ratio forced to 1:1

bit 10-8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits

000 = FRC divide by 1 (default)

001 = FRC divide by 2

010 = FRC divide by 4

011 = FRC divide by 8

100 = FRC divide by 16

101 = FRC divide by 32

110 = FRC divide by 64

111 = FRC divide by 256

bit 7-6 PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)

00 = Output/2

01 = Output/4 (default)

10 = Reserved

11 = Output/8

bit 5 **Unimplemented:** Read as '0'

bit 4-0 PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as 'N1', PLL prescaler)

00000 = Input/2 (default)

00001 = Input/3

.

•

11111 = Input/33

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	PLLDIV<8>
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI'	V<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'

bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

0000000000 = 2 0000000001 = 3

000000010 = 4

•

.

000110000 = **50** (default)

•

•

111111111 = 513

REGISTER 8-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			TUN	I<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-6 **Unimplemented:** Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits

011111 = Center frequency +11.625% (8.23 MHz)

011110 = Center frequency +11.25% (8.20 MHz)

•

000001 = Center frequency +0.375% (7.40 MHz)

000000 = Center frequency (7.37 MHz nominal)

111111 = Center frequency -0.375% (7.345 MHz)

•

100001 = Center frequency -11.625% (6.52 MHz)

100000 = Center frequency -12% (6.49 MHz)

REGISTER 8-5: ACLKCON: AUXILIARY CONTROL REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	SELACLK	AOSCN	/ID<1:0>	Al	PSTSCLR<2:0	>
bit 15							bit 8

R/W-0	U-0						
ASRCSEL	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13 SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider

1 = Auxiliary Oscillators provides the source clock for Auxiliary Clock Divider

0 = FRC with PLL provides the source clock for Auxiliary Clock Divider

bit 12-11 AOSCMD<1:0>: Auxiliary Oscillator Mode

11 = EC External Clock Mode Select

10 = XT Oscillator Mode Select

01 = HS Oscillator Mode Select

00 = Auxiliary Oscillator Disabled

bit 10-8 APSTSCLR<2:0>: Auxiliary Clock Output Divider

111 = divided by 1

110 = divided by 2

101 = divided by 4

100 = divided by 8

111 = divided by 16

010 = divided by 32

011 = divided by 64

000 = divided by 256 (default)

bit 7 ASRCSEL: Select Reference Clock Source for Auxiliary Clock

1 = Primary Oscillator is the Clock Source

0 = Auxiliary Oscillator is the Clock Source

bit 6-0 **Unimplemented:** Read as '0'

8.2 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 26.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.2.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware
 if it is not currently running. If a crystal oscillator
 must be turned on, the hardware waits until the
 Oscillator Start-up Timer (OST) expires. If the
 new source is using the PLL, the hardware waits
 until a PLL lock is detected (LOCK = 1).
- The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

8.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X0
NOTES:

9.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 9. Watchdog Timer and Power Savings Modes" (DS70196), which is available from the Microchip website

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices can manage power consumption in four ways:

(www.microchip.com).

- · Clock frequency
- · Instruction-based Sleep and Idle modes
- · Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0** "Oscillator Configuration".

9.2 Instruction-Based Power-Saving Modes

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- · A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode PWRSAV #IDLE MODE ; Put the device into IDLE mode

9.2.2 IDLE MODE

The following occur in Idle mode:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a ${\tt PWRSAV}$ instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note:

If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

10.0 I/O PORTS

This data sheet summarizes the features Note: dsPIC33FJ32GP302/304 the dsPIC33FJ64GPX02/X04, dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 10. I/O Ports" (DS70193), which is available from the Microchip website (www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a

peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

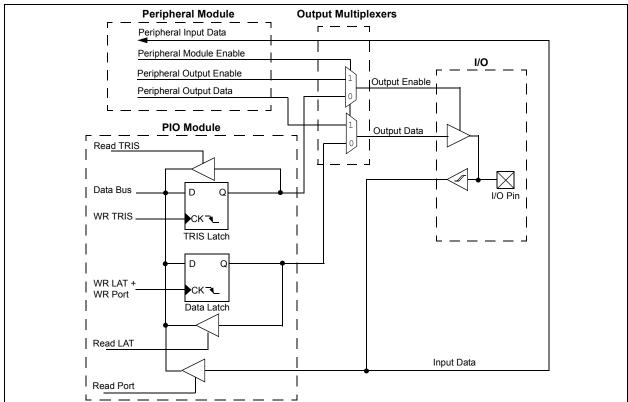


FIGURE 10-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 145

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital-only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Some I/O pins may have internal analog functionality that will not be shown on the device pin diagram. These pins must be treated as analog pins. Table 10-1 lists all available pins and their functionality.

TABLE 10-1: AVAILABLE I/O PINS AND THEIR FUNCTIONALITY

I/O Pin	Digital Only/5V Tolerant	I/O Pin	Digital Only/5V Tolerant
RA0	No	RB9	Yes
RA1	No	RB10	Yes
RA2	No	RB11	Yes
RA3	No	RB12	No
RA4	No	RB13	No
RA7	Yes	RB14	No
RA8	Yes	RB15	No
RA9	Yes	RC0	No
RA10	Yes	RC1	No
RB0	No	RC2	No
RB1	No	RC3	Yes
RB2	No	RC4	Yes
RB3	No	RC5	Yes
RB4	No	RC6	Yes
RB5	Yes	RC7	Yes
RB6	Yes	RC8	Yes
RB7	Yes	RC9	Yes
RB8	Yes		

10.2 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an \mathtt{NOP} , as shown in Example 10-1.

10.3 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

```
MOV 0xFF00, W0 ; Configure PORTB<15:8> as inputs
MOV W0, TRISBB ; and PORTB<7:0> as outputs
NOP ; Delay 1 cycle
btss PORTB, #13 ; Next Instruction
```

10.4 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

10.4.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.4.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-16). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

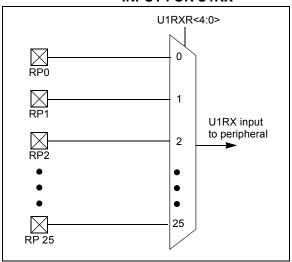


TABLE 10-2: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<4:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 7	IC7	RPINR10	IC7R<4:0>
Input Capture 8	IC8	RPINR10	IC8R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
UART2 Receive	U2RX	RPINR19	U2RXR<4:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<4:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<4:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<4:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<4:0>
SPI2 Slave Select Input	SS2	RPINR23	SS2R<4:0>
DCI Serial Data Input	CSDI	RPINR24	CSDIR<4:0>
DCI Serial Clock Input	CSCK	RPINR24	CSCKR<4:0>
DCI Frame Sync Input	COFS	RPINR25	COFSR<4:0>
ECAN1 Receive	CIRX	RPINR26	CIRXR<4:0>

Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.

10.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-17 through Register). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-3 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3: MULTIPLEXING OF REMAPPABLE OUTPUT

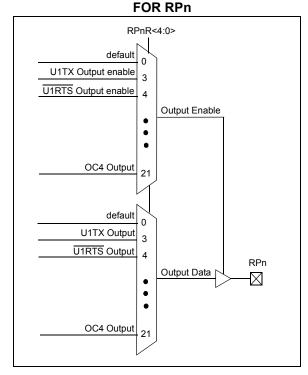


TABLE 10-3: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C1OUT	00001	RPn tied to Comparator1 Output
C2OUT	00010	RPn tied to Comparator2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
U2TX	00101	RPn tied to UART2 Transmit
U2RTS	00110	RPn tied to UART2 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK10UT	01000	RPn tied to SPI1 Clock Output
SS10UT	01001	RPn tied to SPI1 Slave Select Output
SDO2	01010	RPn tied to SPI2 Data Output
SCK2OUT	01011	RPn tied to SPI2 Clock Output
SS2OUT	01100	RPn tied to SPI2 Slave Select Output
CSDO	01101	RPn tied to DCl Serial Data Output
CSCKOUT	01110	RPn tied to DCl Serial Clock Output
COFSOUT	01111	RPn tied to DCI Frame Sync Output
C1TX	10000	RPn tied to ECAN1 Transmit
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
OC3	10100	RPn tied to Output Compare 3
OC4	10101	RPn tied to Output Compare 4

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- · Continuous state monitoring
- · Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- Clear (or set) IOLOCK as a single operation.

Note: MPLAB® C30 provides built-in C language functions for unlocking the OSCCON register:

__builtin_write_OSCCONL(value)
__builtin_write_OSCCONH(value)
See MPLAB Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<IOL1WAY>) configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

10.5 Peripheral Pin Select Registers

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family of devices implement 33 registers for remappable peripheral configuration:

- 16 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR11, and PRINR18-RPINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note: Input and Output Register values can only be changed if the IOLOCK bit (OSCCON<6>) is set to '0'. See Section 10.4.3.1 "Control Register Lock" for a specific command sequence.

REGISTER 10-1: RPINRO: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			INT1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

00001 = Input tied to RP1 00000 = Input tied to RP0

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			INT2R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4-0 **INTR2R<4:0>:** Assign External Interrupt 2 (INTR2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3 REGISTER 10-3:

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			T3CKR<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			T2CKR<4:0>		
bit 7							bit 0

Legend:

R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to the corresponding RPn pin

> 11111 = Input tied to Vss 11001 = Input tied to RP25

00001 = Input tied to RP1

00000 = Input tied to RP0

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin

> 11111 = Input tied to Vss 11001 = Input tied to RP25

00001 = Input tied to RP1

00000 = Input tied to RP0

REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			T5CKR<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			T4CKR<4:0>	•	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 T5CKR<4:0>: Assign Timer5 External Clock (T5CK) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

•

00001 = Input tied to RP1 00000 = Input tied to RP0

000000 - Input tied to IXI 0

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

REGISTER 10-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			IC2R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			IC1R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 IC2R<4:0>: Assign Input Capture 2 (IC2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

.

•

00001 = Input tied to RP1 00000 = Input tied to RP0

00000 - Input tied to RPU

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 IC1R<4:0>: Assign Input Capture 1 (IC1) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25.

•

•

•

REGISTER 10-6: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTERS 10

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			IC8R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			IC7R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 IC8R<4:0>: Assign Input Capture 8 (IC8) to the corresponding pin RPn pin

> 11111 = Input tied to Vss 11001 = Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

bit 7-5 Unimplemented: Read as '0'

IC7R<4:0>: Assign Input Capture 7 (IC7) to the corresponding pin RPn pin bit 4-0

11111 = Input tied to Vss

11001 = Input tied to RP25

REGISTER 10-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			OCFAR<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4-0 OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

REGISTER 10-8: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			U1CTSR<4:0>	>	
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			U1RXR<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0' bit 12-8 **U1CTSR<4:0>:** Assign UART1 Clear to Send (U1CTS) to the corresponding RPn pin

11111 = Input tied to Vss

11111 = Input tied to VSS 11001 = Input tied to RP25

•

•

00001 = Input tied to RP1 00000 = Input tied to RP0

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 U1RXR<4:0>: Assign UART1 Receive (U1RX) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

.

REGISTER 10-9: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			U2CTSR<4:0	>	
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			U2RXR<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 **U2CTSR<4:0>:** Assign UART2 Clear to Send (U2CTS) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

.

•

00001 = Input tied to RP1

00000 = Input tied to RP0

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 **U2RXR<4:0>:** Assign UART2 Receive (U2RX) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

00001 = Input tied to RP1

00000 = Input tied to RP0

REGISTER 10-10: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			SCK1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			SDI1R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 12-8 SCK1R<4:0>: Assign SPI1 Clock Input (SCK1) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

.

•

00001 = Input tied to RP1 00000 = Input tied to RP0

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

REGISTER 10-11: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			SS1R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS1R<4:0>: Assign SPI1 Slave Select Input (SS1) to the corresponding RPn pin

> 11111 = Input tied to Vss 11001 = Input tied to RP25

REGISTER 10-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			SCK2R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			SDI2R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 SCK2R<4:0>: Assign SPI2 Clock Input (SCK2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

.

00001 = Input tied to RP1

00000 = Input tied to RP0

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

_

00001 = Input tied to RP1

00000 = Input tied to RP0

REGISTER 10-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			SS2R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

REGISTER 10-14: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			CSCKR<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			CSDIR<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 CSCKR<4:0>: Assign DCI Serial Clock Input (CSCK) to the corresponding RPn pin

11111 = Input tied to Vss

11001 = Input tied to RP25

•

.

00001 = Input tied to RP1

00000 = Input tied to RP0

bit 4-0 CSDIR<4:0>: Assign DCI Serial Data Input (CSDI) to the corresponding RPn pin

11111 = Input tied to Vss

11001 = Input tied to RP25

•

00001 = Input tied to RP1

00000 = Input tied to RP0

REGISTER 10-15: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			COFSR<4:0>	•	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4-0 **COFSR<4:0>:** Assign DCI Frame Sync Input (COFS) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

•

•

00001 = Input tied to RP1

00000 = Input tied to RP0

REGISTER 10-16: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_		_
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			C1RXR<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 C1RXR<4:0>: Assign ECAN1Receive (C1RX) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25

.

.

00001 = Input tied to RP1

00000 = Input tied to RP0

Note 1: This register is disabled on devices without ECAN

REGISTER 10-17: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP1R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP0R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-3 for

peripheral function numbers)

REGISTER 10-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTERS 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP3R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP2R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 RP3R<4:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP2R<4:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-3 for

REGISTER 10-19: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTERS 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP5R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP4R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-3 for

peripheral function numbers)

REGISTER 10-20: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTERS 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP6R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 RP7R<4:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP6R<4:0>: Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-3 for

REGISTER 10-21: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTERS 0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP9R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP8R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP9R<4:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP8R<4:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-3 for

peripheral function numbers)

REGISTER 10-22: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTERS 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP10R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 RP11R<4:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-3 for

REGISTER 10-23: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTERS 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_				RP13R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP12R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-3 for

peripheral function numbers)

REGISTER 10-24: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTERS 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP14R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP15R<4:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP14R<4:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-3 for

REGISTER 10-25: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTERS 8⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP17R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP16R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-3 for

peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 10-26: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTERS 9⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP19R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP18R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 10-3 for

peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 10-27: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTERS 10⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP21R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP20R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 10-3 for

peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 10-28: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTERS 11⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP23R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP22R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 RP23R<4:0>: Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP22R<4:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 10-3 for

peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTERS 12⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP25R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			RP24R<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits (see Table 10-3 for

peripheral function numbers)

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 10-3 for

Note 1: This register is implemented in 44-pin devices only.

dsPIC33FJ32GP3	02/304, dsPIC33FJ	J64GPX02/X04,	, AND dsPIC33F	J128GPX02/X04
NOTES:				

11.0 TIMER1

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 11. Timers" (DS70205), which is available from the Microchip website (www.microchip.com).

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

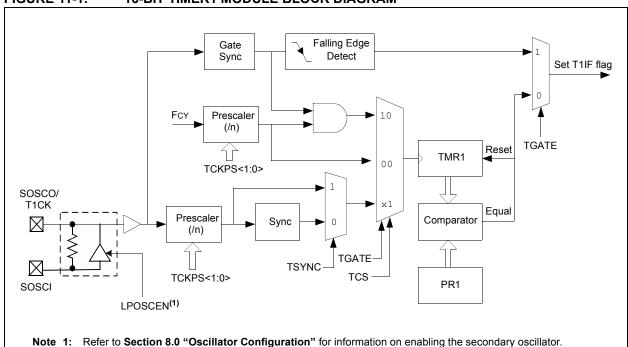
The unique features of Timer1 allow it to be used for Real Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- · Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 11-1.

TABLE 11-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	Х
Gated timer	0	1	Х
Synchronous counter	1	Х	1
Asynchronous counter	1	Х	0

FIGURE 11-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE	TCKPS	S<1:0>	_	TSYNC	TCS	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 TON: Timer1 On bit

1 = Starts 16-bit Timer1
0 = Stops 16-bit Timer1

bit 14 Unimplemented: Read as '0'

bit 13 TSIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12-7 Unimplemented: Read as '0'

bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit

When T1CS = 1: This bit is ignored. When T1CS = 0:

1 = Gated time accumulation enabled0 = Gated time accumulation disabled

bit 5-4 TCKPS<1:0> Timer1 Input Clock Prescale Select bits

11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1

bit 3 Unimplemented: Read as '0'

bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit

When TCS = 1:

1 = Synchronize external clock input0 = Do not synchronize external clock input

When TCS = 0: This bit is ignored.

bit 1 TCS: Timer1 Clock Source Select bit

1 = External clock from pin T1CK (on the rising edge)

0 = Internal clock (Fcy)

bit 0 **Unimplemented:** Read as '0'

12.0 TIMER2/3 AND TIMER4/5 FEATURE

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 11. Timers" (DS70205), which is available from the Microchip website (www.microchip.com).

Timer2 and Timer4 are Type B timers with the following specific features:

 A Type B timer can be concatenated with a Type C timer to form a 32-bit timer The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

A block diagram of the Type B timer is shown in Figure 12-1.

Timer3 and Timer5 are Type C timers with the following specific features:

- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an A/D conversion.
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

A block diagram of the Type C timer is shown in Figure 12-2.

FIGURE 12-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)

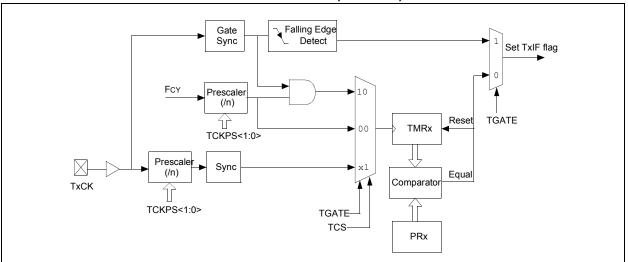
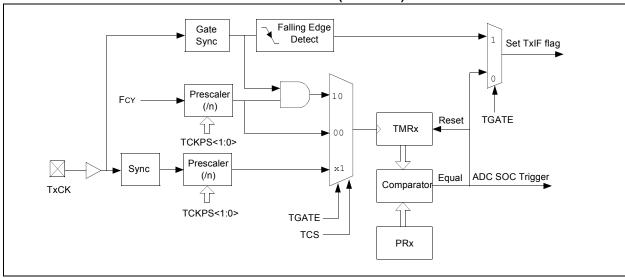



FIGURE 12-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 or 5)

The Timer2/3 and Timer4/5 modules can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- · Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FCY). In Synchronous Counter mode, the input clock is derived from the external clock input at TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE
Timer	0	0
Gated timer	0	1
Synchronous counter	1	Х

12.1 16-bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- Select the timer prescaler ratio using the TCKPS<1:0> bits.
- Set the Clock and Gating modes using the TCS and TGATE bits.
- Load the timer period value into the PRx register.
- If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

12.2 32-bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control. Type C timer control register bits are ignored (except TSIDL bit).

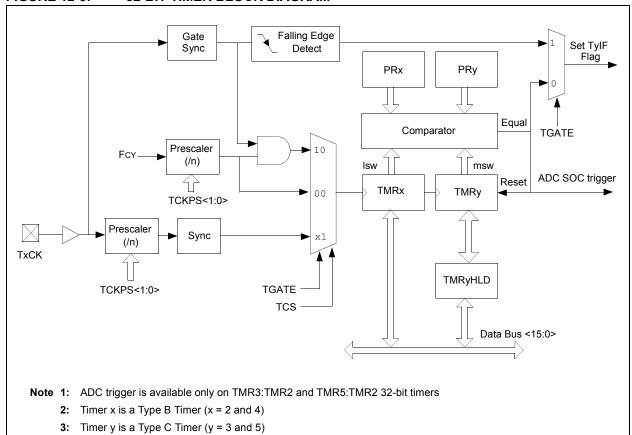
For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Type B and Type C timers that can be combined to form a 32-bit timer are listed in Table 12-2.

TABLE 12-2: 32-BIT TIMER

TYPE B Timer (Isw)	TYPE C Timer (msw)		
Timer2	Timer3		
Timer4	Timer5		

A block diagram representation of the 32-bit timer module is shown in Figure 12-3. The 32-timer module can operate in one of the following modes:


- · Timer mode
- Gated Timer mode
- · Synchronous Counter mode

To configure the features of Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- Load the timer period value. PR3 or PR5 contains the most significant word of the value, while PR2 or PR4 contains the least significant word.
- If interrupts are required, set the interrupt enable bits, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0> to set the interrupt priority. While Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the most significant word of the count, while TMR2 or TMR4 contains the least significant word.

FIGURE 12-3: 32-BIT TIMER BLOCK DIAGRAM

REGISTER 12-1: TxCON: TIMER CONTROL REGISTER (x = 2 OR 4, y = 3 OR 5)

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	TGATE	TCKPS	S<1:0>	T32 ⁽¹⁾	_	TCS	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 TON: Timerx On bit

When T32 = 1 (in 32-bit Timer mode):

1 = Starts 32-bit TMRx:TMRy timer pair

0 = Stops 32-bit TMRx:TMRy timer pair

When T32 = 0 (in 16-bit Timer mode):

1 = Starts 16-bit timer0 = Stops 16-bit timer

bit 14 **Unimplemented:** Read as '0' bit 13 **TSIDL:** Stop in Idle Mode bit

1 = Discontinue timer operation when device enters Idle mode

0 = Continue timer operation in Idle mode

bit 12-7 **Unimplemented:** Read as '0'

bit 6 TGATE: Timerx Gated Time Accumulation Enable bit

When TCS = 1: This bit is ignored. When TCS = 0:

1 = Gated time accumulation enabled0 = Gated time accumulation disabled

bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits

11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value

bit 3 T32: 32-bit Timerx Mode Select bit⁽¹⁾

1 = TMRx and TMRy form a 32-bit timer

0 = TMRx and TMRy form separate 16-bit timer

bit 2 Unimplemented: Read as '0'

bit 1 TCS: Timerx Clock Source Select bit

1 = External clock from TxCK pin 0 = Internal clock (Fosc/2)

bit 0 **Unimplemented:** Read as '0'

Note 1: In 32-bit mode, the TYCON control bits do not effect 32-bit timer operation.

REGISTER 12-2: TxCON: TIMER CONTROL REGISTER (x = 3 OR 5)

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	_	TSIDL ⁽¹⁾	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽²⁾	TCKPS	<1:0> ⁽²⁾	_	_	TCS ⁽²⁾	_
bit 7							bit 0

Legend:

R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **TON:** Timery On bit⁽²⁾

1 = Starts 16-bit Timerx

0 = Stops 16-bit Timerx

bit 14 Unimplemented: Read as '0'

bit 13 TSIDL: Stop in Idle Mode bit (1)

1 = Discontinue timer operation when device enters Idle mode

0 = Continue timer operation in Idle mode

bit 12-7 Unimplemented: Read as '0'

bit 6 **TGATE:** Timerx Gated Time Accumulation Enable bit⁽²⁾

> When TCS = 1: This bit is ignored.

When TCS = 0:

1 = Gated time accumulation enabled 0 = Gated time accumulation disabled

TCKPS<1:0>: Timerx Input Clock Prescale Select bits(2) bit 5-4

> 11 = 1:256 prescale value 10 = 1:64 prescale value 01 = 1:8 prescale value 00 = 1:1 prescale value

bit 3-2 Unimplemented: Read as '0'

TCS: Timerx Clock Source Select bit(2) bit 1

1 = External clock from TxCK pin

0 = Internal clock (Fosc/2)

bit 0 Unimplemented: Read as '0'

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits have no effect.

dsPIC33FJ32	2GP302/304, c	lsPIC33FJ64	4GPX02/X04	I, AND dsPl	C33FJ128G	PX02/X04
NOTES:						

13.0 INPUT CAPTURE

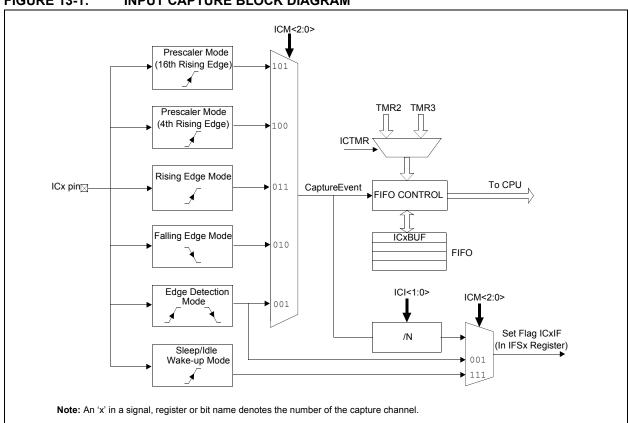
Note: This data sheet summarizes the features dsPIC33FJ32GP302/304 dsPIC33FJ64GPX02/X04, dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 12. Input Capture" (DS70198), which is available from the Microchip website (www.microchip.com).

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices support up to four input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- 1. Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin

- Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin


Each input capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00)

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

13.1 Input Capture Registers

REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	ICSIDL	_	_	_	_	_
bit 15	_						bit 8

R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0
ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13 ICSIDL: Input Capture Module Stop in Idle Control bit

1 = Input capture module halts in CPU Idle mode

0 = Input capture module continues to operate in CPU Idle mode

bit 12-8 **Unimplemented:** Read as '0'

bit 7 ICTMR: Input Capture Timer Select bits

1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event

bit 6-5 ICI<1:0>: Select Number of Captures per Interrupt bits

11 = Interrupt on every fourth capture event10 = Interrupt on every third capture event01 = Interrupt on every second capture event

00 = Interrupt on every capture event

bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only)

1 = Input capture overflow occurred0 = No input capture overflow occurred

bit 3 ICBNE: Input Capture Buffer Empty Status bit (read-only)

1 = Input capture buffer is not empty, at least one more capture value can be read

0 = Input capture buffer is empty

bit 2-0 ICM<2:0>: Input Capture Mode Select bits

111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.)

110 = Unused (module disabled)

101 = Capture mode, every 16th rising edge

100 = Capture mode, every 4th rising edge

011 = Capture mode, every rising edge

010 = Capture mode, every falling edge

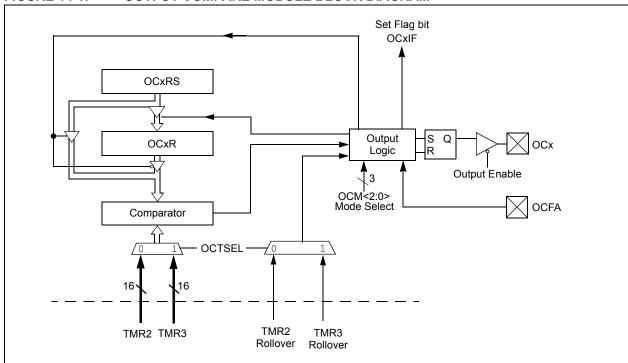
001 = Capture mode, every edge (rising and falling)

(ICI<1:0> bits do not control interrupt generation for this mode.)

000 = Input capture module turned off

14.0 OUTPUT COMPARE

Note: This data sheet summarizes the features the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 13. Output Compare" (DS70209), which is available from the Microchip website (www.microchip.com).


The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected.

The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

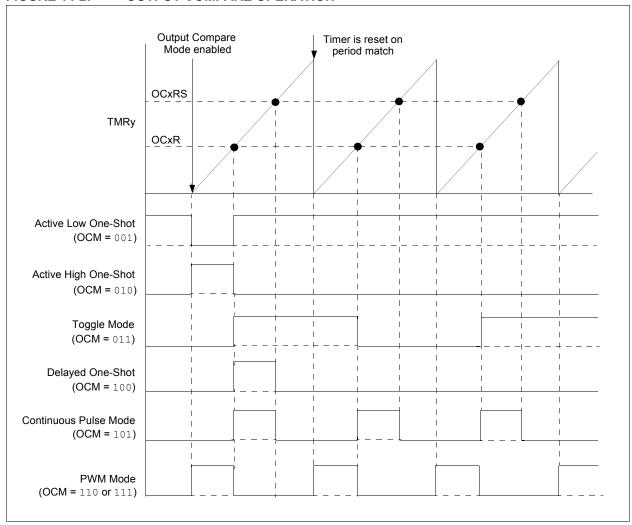
- · Active Low One-Shot mode
- · Active High One-Shot mode
- · Toggle mode
- · Delayed One-Shot mode
- · Continuous Pulse mode
- · PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 185

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output


compare operation for various modes. The user application must disable the associated timer when writing to the output compare control registers to avoid malfunctions.

Note: Only OC1 and OC2 can trigger a DMA data transfer.

TABLE 14-1: OUTPUT COMPARE MODES

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	_
001	Active Low One-Shot	0	OCx Rising edge
010	Active High One-Shot	1	OCx Falling edge
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge
100	Delayed One-Shot	0	OCx Falling edge
101	Continuous Pulse mode	0	OCx Falling edge
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4

FIGURE 14-2: OUTPUT COMPARE OPERATION

REGISTER 14-1: OCXCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 OR 4)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	OCSIDL	_	_	_	_	_
bit 15		_			_	_	bit 8

U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Cleared in Hardware	HS = Set in Hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared $x = Bit$ is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13 OCSIDL: Stop Output Compare in Idle Mode Control bit

1 = Output Compare x halts in CPU Idle mode

0 = Output Compare x continues to operate in CPU Idle mode

bit 12-5 Unimplemented: Read as '0'

bit 4 OCFLT: PWM Fault Condition Status bit

1 = PWM Fault condition has occurred (cleared in hardware only)

 $_{0}$ = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111.)

bit 3 OCTSEL: Output Compare Timer Select bit

1 = Timer3 is the clock source for Compare x0 = Timer2 is the clock source for Compare x

bit 2-0 OCM<2:0>: Output Compare Mode Select bits

111 = PWM mode on OCx, Fault pin enabled

110 = PWM mode on OCx, Fault pin enabled

101 = Initialize OCx pin low, generate continuous output pulses on OCx pin

100 = Initialize OCx pin low, generate single output pulse on OCx pin

011 = Compare event toggles OCx pin

010 = Initialize OCx pin high, compare event forces OCx pin low

001 = Initialize OCx pin low, compare event forces OCx pin high

000 = Output compare channel is disabled

DS70292B-page 187

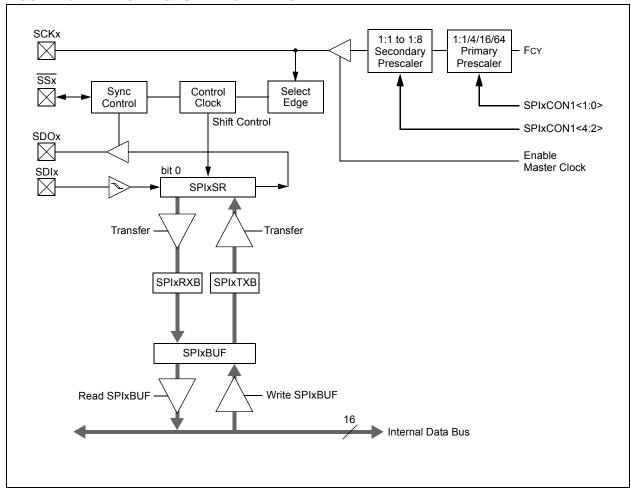
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX0	
NOTES:	

15.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 18. Serial Peripheral Interface (SPI)" (DS70206), which is available from the Microchip website (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These

peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].


Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (serial data input)
- · SDOx (serial data output)
- · SCKx (shift clock input or output)
- · SSx (active low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 15-1: SPI MODULE BLOCK DIAGRAM

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 189

REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
SPIEN	_	SPISIDL	_	_	_	_	_
bit 15							bit 8

U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0
_	SPIROV	_	_	_	_	SPITBF	SPIRBF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 SPIEN: SPIx Enable bit

1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins

0 = Disables module

bit 14 **Unimplemented:** Read as '0' bit 13 **SPISIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12-7 **Unimplemented:** Read as '0'

bit 6 SPIROV: Receive Overflow Flag bit

1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.

0 = No overflow has occurred.

bit 5-2 **Unimplemented:** Read as '0'

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty

Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB

Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive complete, SPIxRXB is full

0 = Receive is not complete, SPIxRXB is empty

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB

REGISTER 15-2: SPIXCON1: SPIX CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>
bit 7							bit 0

Legend:

bit 9

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12 **DISSCK:** Disable SCKx pin bit (SPI Master modes only)

1 = Internal SPI clock is disabled, pin functions as I/O

0 = Internal SPI clock is enabled

bit 11 DISSDO: Disable SDOx pin bit

1 = SDOx pin is not used by module; pin functions as I/O

0 = SDOx pin is controlled by the module

bit 10 MODE16: Word/Byte Communication Select bit

1 = Communication is word-wide (16 bits)0 = Communication is byte-wide (8 bits)

SMP: SPIx Data Input Sample Phase bit

Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

Slave mode:

SMP must be cleared when SPIx is used in Slave mode.

bit 8 **CKE:** SPIx Clock Edge Select bit⁽¹⁾

1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)

0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)

bit 7 SSEN: Slave Select Enable bit (Slave mode)

 $1 = \overline{SSx}$ pin used for Slave mode

 $0 = \overline{SSx}$ pin not used by module. Pin controlled by port function.

bit 6 **CKP:** Clock Polarity Select bit

1 = Idle state for clock is a high level; active state is a low level

0 = Idle state for clock is a low level; active state is a high level

bit 5 MSTEN: Master Mode Enable bit

1 = Master mode

0 = Slave mode

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

REGISTER 15-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	_	_	_	_	_	FRMDLY	_
bit 7							bit 0

Legend:

bit 0

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 FRMEN: Framed SPIx Support bit

1 = Framed SPIx support enabled (\overline{SSx} pin used as frame sync pulse input/output)

0 = Framed SPIx support disabled

bit 14 SPIFSD: Frame Sync Pulse Direction Control bit

1 = Frame sync pulse input (slave)0 = Frame sync pulse output (master)

bit 13 FRMPOL: Frame Sync Pulse Polarity bit

1 = Frame sync pulse is active-high

0 = Frame sync pulse is active-low

bit 12-2 **Unimplemented:** Read as '0'

bit 1 FRMDLY: Frame Sync Pulse Edge Select bit

1 = Frame sync pulse coincides with first bit clock0 = Frame sync pulse precedes first bit clock

Unimplemented: This bit must not be set to '1' by the user application.

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04	4
NOTES:	

16.0 INTER-INTEGRATED CIRCUIT (I²C™)

Note:

This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 19. InterIntegrated Circuit (I^2C^{TM})" (DS70195), which is available from the Microchip website (www.microchip.com).

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- · The SCLx pin is clock.
- · The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.

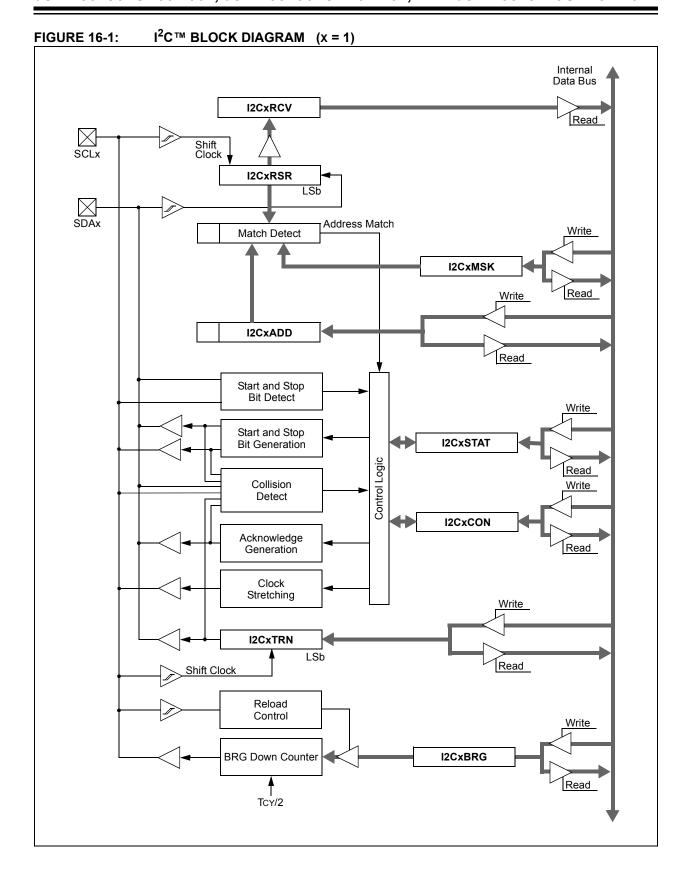
16.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I^2C module can operate either as a slave or a master on an I^2C bus.

The following types of I²C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7- or 10-bit address


For details about the communication sequence in each of these modes, refer to the "dsPIC33F Family Reference Manual". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F Family Reference Manual chapters.

16.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- · The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0 HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	U = Unimplemented bit, re	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	W = Writable bit HS = Set in hardware HC = Cleared in hardware					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15 I2CEN: I2Cx Enable bit

1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins

0 = Disables the I2Cx module. All I²C[™] pins are controlled by port functions.

bit 14 Unimplemented: Read as '0'

bit 13 I2CSIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters an Idle mode

0 = Continue module operation in Idle mode

bit 12 SCLREL: SCLx Release Control bit (when operating as I²C slave)

1 = Release SCLx clock

0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

bit 11 IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit

1 = IPMI mode is enabled; all addresses Acknowledged

0 = IPMI mode disabled

bit 10 A10M: 10-bit Slave Address bit

1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address

bit 9 DISSLW: Disable Slew Rate Control bit

1 = Slew rate control disabled

0 = Slew rate control enabled

bit 8 SMEN: SMbus Input Levels bit

1 = Enable I/O pin thresholds compliant with SMbus specification

0 = Disable SMbus input thresholds

bit 7 **GCEN:** General Call Enable bit (when operating as I²C slave)

1 = Enable interrupt when a general call address is received in the I2CxRSR

(module is enabled for reception) 0 = General call address disabled

bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave)

Used in conjunction with SCLREL bit.

1 = Enable software or receive clock stretching

0 = Disable software or receive clock stretching

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5 **ACKDT:** Acknowledge Data bit (when operating as I²C master, applicable during master receive)

Value that is transmitted when the software initiates an Acknowledge sequence.

1 = Send NACK during Acknowledge

0 = Send ACK during Acknowledge

bit 4 ACKEN: Acknowledge Sequence Enable bit

(when operating as I²C master, applicable during master receive)

1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence.

0 = Acknowledge sequence not in progress

bit 3 **RCEN:** Receive Enable bit (when operating as I²C master)

1 = Enables Receive mode for I^2C . Hardware clear at end of eighth bit of master receive data byte.

0 = Receive sequence not in progress

bit 2 **PEN:** Stop Condition Enable bit (when operating as I²C master)

1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.

0 = Stop condition not in progress

bit 1 **RSEN:** Repeated Start Condition Enable bit (when operating as I²C master)

1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.

0 = Repeated Start condition not in progress

bit 0 **SEN:** Start Condition Enable bit (when operating as I²C master)

1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.

0 = Start condition not in progress

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10
bit 15							bit 8

R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0

Legend:	U = Unimplemented bit,	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	W = Writable bit HS = Set in hardware HSC = Hardware set/cl					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C[™] master, applicable to master transmit operation)

1 = NACK received from slave 0 = ACK received from slave

Hardware set or clear at end of slave Acknowledge.

bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)

1 = Master transmit is in progress (8 bits + ACK)

0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

bit 13-11 **Unimplemented:** Read as '0'

bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision.

bit 9 GCSTAT: General Call Status bit

1 = General call address was received0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

bit 7 **IWCOL:** Write Collision Detect bit

1 = An attempt to write the I2CxTRN register failed because the I²C module is busy

0 = No collision

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

bit 6 I2COV: Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte

0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C slave)

1 = Indicates that the last byte received was data

0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

bit 4 **P:** Stop bit

1 = Indicates that a Stop bit has been detected last

0 = Stop bit was not detected last

Hardware set or clear when Start, Repeated Start or Stop detected.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3 S: Start bit

1 = Indicates that a Start (or Repeated Start) bit has been detected last

0 = Start bit was not detected last

Hardware set or clear when Start, Repeated Start or Stop detected.

bit 2 **R_W:** Read/Write Information bit (when operating as I²C slave)

1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave

Hardware set or clear after reception of I²C device address byte.

bit 1 RBF: Receive Buffer Full Status bit

1 = Receive complete, I2CxRCV is full

0 = Receive not complete, I2CxRCV is empty

Hardware set when I2CxRCV is written with received byte. Hardware clear when software

reads I2CxRCV.

bit 0 TBF: Transmit Buffer Full Status bit

1 = Transmit in progress, I2CxTRN is full

0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 **Unimplemented:** Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

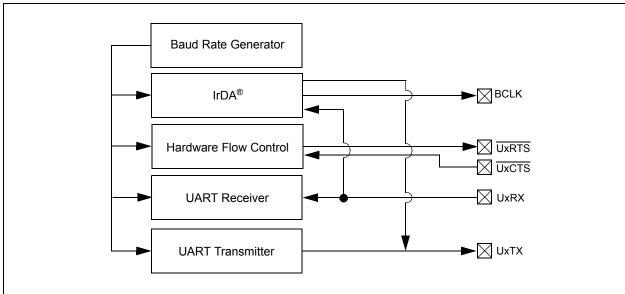
0 = Disable masking for bit x; bit match required in this position

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X0
NOTES:

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 17. UART" (DS70188), which is available from the Microchip website (www.microchip.com).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA® encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 1 Mbps to 15 Mbps at 16 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- · Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- · Support for sync and break characters
- · Support for automatic baud rate detection
- · IrDA encoder and decoder logic
- · 16x baud clock output for IrDA support

A simplified block diagram of the UART module is shown in Figure 17-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- · Asynchronous Transmitter
- · Asynchronous Receiver

FIGURE 17-1: UART SIMPLIFIED BLOCK DIAGRAM

Note 1: Both UART1 and UART2 can trigger a DMA data transfer.

2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

REGISTER 17-1: **UxMODE: UARTx MODE REGISTER**

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN	_	USIDL	IREN ⁽¹⁾	RTSMD	_	UEN<1:0>	
bit 15							bit 8

R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>		STSEL
bit 7							bit 0

Legend:	HC = Hardware cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **UARTEN:** UARTx Enable bit

1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>

0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption

bit 14 Unimplemented: Read as '0'

bit 13 USIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

IREN: IrDA Encoder and Decoder Enable bit(1) bit 12

1 = IrDA encoder and decoder enabled

0 = IrDA encoder and decoder disabled

RTSMD: Mode Selection for UxRTS Pin bit bit 11

> $1 = \overline{\text{UxRTS}}$ pin in Simplex mode $0 = \overline{\text{UxRTS}}$ pin in Flow Control mode

bit 10 Unimplemented: Read as '0'

bit 9-8 UEN<1:0>: UARTx Enable bits

11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches

10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used

WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit

01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches

00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by port latches

1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared

in hardware on following rising edge

0 = No wake-up enabled

bit 6 LPBACK: UARTx Loopback Mode Select bit

1 = Enable Loopback mode

0 = Loopback mode is disabled

bit 5 ABAUD: Auto-Baud Enable bit

1 = Enable baud rate measurement on the next character - requires reception of a Sync field (55h)

before other data; cleared in hardware upon completion 0 = Baud rate measurement disabled or completed

bit 4 **URXINV:** Receive Polarity Inversion bit

1 = UxRX Idle state is '0'

0 = UxRX Idle state is '1'

Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).

bit 7

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 3 BRGH: High Baud Rate Enable bit

1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)

bit 2-1 PDSEL<1:0>: Parity and Data Selection bits

11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity

bit 0 STSEL: Stop Bit Selection bit

1 = Two Stop bits0 = One Stop bit

Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend: HC = Hardware cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits

- 11 = Reserved: do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: Encoder Transmit Polarity Inversion bit
 - 1 = UxTX Idle state is '1'
 - 0 = UxTX Idle state is '0'
- bit 12 **Unimplemented:** Read as '0'
- bit 11 UTXBRK: Transmit Break bit
 - 1 = Send Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 - 0 = Sync Break transmission disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = Transmit enabled, UxTX pin controlled by UARTx
 - 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port.
- bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters.
- bit 5 ADDEN: Address Character Detect bit (bit 8 of received data = 1)
 - 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.
 - 0 = Address Detect mode disabled
- bit 4 RIDLE: Receiver Idle bit (read-only)
 - 1 = Receiver is Idle
 - 0 = Receiver is active

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 3 **PERR:** Parity Error Status bit (read-only)
 - 1 = Parity error has been detected for the current character (character at the top of the receive FIFO)
 - 0 = Parity error has not been detected
- bit 2 FERR: Framing Error Status bit (read-only)
 - 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
 - 0 = Framing error has not been detected
- bit 1 **OERR:** Receive Buffer Overrun Error Status bit (read/clear only)
 - 1 = Receive buffer has overflowed
 - 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 \rightarrow 0 transition) resets the receiver buffer and the UxRSR to the empty state.
- bit 0 URXDA: Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

dsPIC33FJ32GP302/30	4, dsPIC33FJ64GF	X02/X04, AND dsF	PIC33FJ128GPX02/X04
NOTES:			

18.0 ENHANCED CAN (ECAN™) MODULE

Note:

This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 21. Enhanced Controller Area Network (ECAN™)" (DS70185), which is available from the Microchip website (www.microchip.com).

18.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices contain up to two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- · 0-8 bytes data length
- · Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source

- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

18.2 Frame Types

The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

· Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).

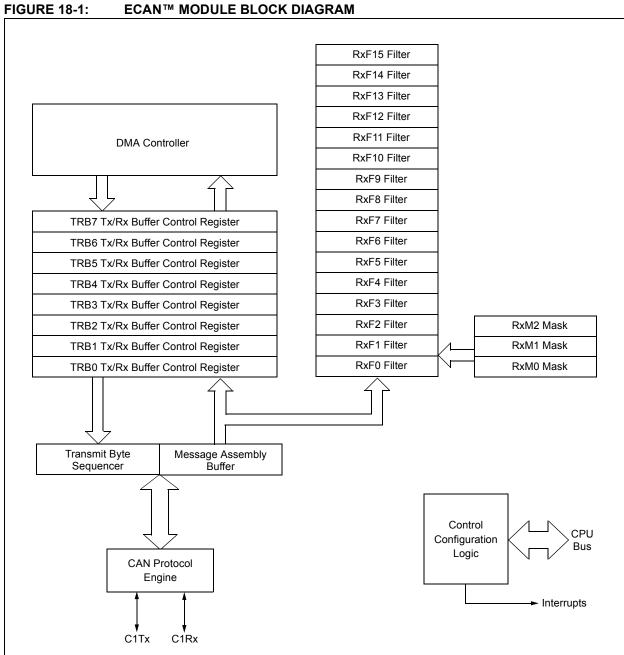
· Extended Data Frame:

An extended data frame is similar to a standard data frame, but includes an extended identifier as well.

Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.

· Error Frame:


An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

· Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

Note:

18.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- · Normal Operation mode
- · Listen Only mode
- · Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

18.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- · All Module Control registers
- · Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- · Identifier Acceptance Filter registers
- · Identifier Acceptance Mask registers

18.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

18.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

18.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

18.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

18.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 211

REGISTER 18-1: CICTRL1: ECAN™ CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
_	_	CSIDL	ABAT	CANCKS		REQOP<2:0>	
bit 15							bit 8

R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
OPMODE<2:0>			_	CANCAP	_	_	WIN
bit 7							bit 0

Legend:C = Writable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0' bit 13 **CSIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12 **ABAT:** Abort All Pending Transmissions bit

1 = Signal all transmit buffers to abort transmission.

0 = Module will clear this bit when all transmissions are aborted

bit 11 CANCKS: CAN Master Clock Select bit

1 = CAN FCAN clock is FCY 0 = CAN FCAN clock is FOSC

bit 10-8 **REQOP<2:0>:** Request Operation Mode bits

000 = Set Normal Operation mode

001 = Set Disable mode 010 = Set Loopback mode 011 = Set Listen Only Mode

100 = Set Configuration mode

101 = Reserved 110 = Reserved

111 = Set Listen All Messages mode

bit 7-5 **OPMODE<2:0>**: Operation Mode bits

000 = Module is in Normal Operation mode

001 = Module is in Disable mode 010 = Module is in Loopback mode

011 = Module is in Listen Only mode

100 = Module is in Configuration mode

101 = Reserved 110 = Reserved

111 = Module is in Listen All Messages mode

bit 4 **Unimplemented:** Read as '0'

bit 3 CANCAP: CAN Message Receive Timer Capture Event Enable bit

1 = Enable input capture based on CAN message receive

0 = Disable CAN capture

bit 2-1 **Unimplemented:** Read as '0'

bit 0 WIN: SFR Map Window Select bit

1 = Use filter window0 = Use buffer window

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04

REGISTER 18-2: CICTRL2: ECAN™ CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
_	_	_	DNCNT<4:0>						
bit 7							bit 0		

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4-0 **DNCNT<4:0>**: DeviceNet™ Filter Bit Number bits

10010-11111 = Invalid selection

10001 = Compare up to data byte 3, bit 6 with EID<17>

•

•

00001 = Compare up to data byte 1, bit 7 with EID<0>

00000 = Do not compare data bytes

REGISTER 18-3: CIVEC: ECAN™ INTERRUPT CODE REGISTER

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
_	_	_	FILHIT<4:0>						
bit 15							bit 8		

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0		
_	ICODE<6:0>								
bit 7							bit 0		

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-13 Unimplemented: Read as '0' bit 12-8 FILHIT<4:0>: Filter Hit Number bits

10000-11111 = Reserved

01111 **= Filter 15**

•

.

00001 = Filter 1 00000 = Filter 0

bit 7 **Unimplemented:** Read as '0'

bit 6-0 ICODE<6:0>: Interrupt Flag Code bits

1000101-1111111 = Reserved

1000100 = FIFO almost full interrupt

1000011 = Receiver overflow interrupt

1000010 = Wake-up interrupt

1000001 = Error interrupt

1000000 **= No interrupt**

•

•

0010000-0111111 = Reserved

0001111 = RB15 buffer Interrupt

•

•

•

0001001 = RB9 buffer interrupt

0001000 = RB8 buffer interrupt

0000111 = TRB7 buffer interrupt

0000110 = TRB6 buffer interrupt

0000101 = TRB5 buffer interrupt 0000100 = TRB4 buffer interrupt

0000011 = TRB3 buffer interrupt

0000011 = TRB2 buffer interrupt

0000001 = TRB1 buffer interrupt

0000000 = TRB0 Buffer interrupt

REGISTER 18-4: CIFCTRL: ECAN™ FIFO CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			FSA<4:0>		
bit 7							bit 0

Legend:	C = Writeable bit, but only	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 15-13 DMABS<2:0>: DMA Buffer Size bits

111 = Reserved

110 = 32 buffers in DMA RAM

101 = 24 buffers in DMA RAM

100 = 16 buffers in DMA RAM

011 = 12 buffers in DMA RAM

010 = 8 buffers in DMA RAM

001 = 6 buffers in DMA RAM

000 = 4 buffers in DMA RAM

bit 12-5 **Unimplemented:** Read as '0'

bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits

11111 = Read buffer RB31

11110 = Read buffer RB30

•

•

•

00001 = Tx/Rx buffer TRB1 00000 = Tx/Rx buffer TRB0

REGISTER 18-5: CIFIFO: ECAN™ FIFO STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FBP	°<5:0>		
bit 15	•	•					bit 8

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FNRI	B<5:0>		
bit 7							bit 0

Legend: C = Writable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **FBP<5:0>**: FIFO Buffer Pointer bits

011111 = RB31 buffer 011110 = RB30 buffer

•

000001 = TRB1 buffer 000000 = TRB0 buffer

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 FNRB<5:0>: FIFO Next Read Buffer Pointer bits

011111 = RB31 buffer 011110 = RB30 buffer

.

Legend:

000001 = TRB1 buffer 000000 = TRB0 buffer

REGISTER 18-6: CIINTF: ECAN™ INTERRUPT FLAG REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8

R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	N = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP : Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state
	0 = Transmitter is not in Bus Passive state
bit 11	RXBP : Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state
	0 = Receiver is not in Bus Passive state
bit 10	TXWAR: Transmitter in Error State Warning bit
	1 = Transmitter is in Error Warning state
	0 = Transmitter is not in Error Warning state
bit 9	RXWAR: Receiver in Error State Warning bit
	1 = Receiver is in Error Warning state
	0 = Receiver is not in Error Warning state
bit 8	EWARN : Transmitter or Receiver in Error State Warning bit
	1 = Transmitter or Receiver is in Error State Warning state
	0 = Transmitter or Receiver is not in Error State Warning state
bit 7	IVRIF: Invalid Message Received Interrupt Flag bit
	1 = Interrupt Request has occurred
F:4 O	0 = Interrupt Request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
	1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred
bit 5	
טונ ס	ERRIF : Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)
	1 = Interrupt Request has occurred
L:L A	0 = Interrupt Request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
	1 = Interrupt Request has occurred
1.11.0	0 = Interrupt Request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	1 = Interrupt Request has occurred
L it A	0 = Interrupt Request has not occurred
bit 1	RBIF: RX Buffer Interrupt Flag bit
	1 = Interrupt Request has occurred 0 = Interrupt Request has not occurred
hit O	
bit 0	TBIF: TX Buffer Interrupt Flag bit 1 = Interrupt Request has occurred
	0 = Interrupt Request has occurred
	o – interrupt request has not occurred

REGISTER 18-7: CIINTE: ECAN™ INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	'0' = Bit is cleared x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	IVRIE: Invalid Message Received Interrupt Enable bit 1 = Interrupt Request Enabled 0 = Interrupt Request not enabled
bit 6	WAKIE : Bus Wake-up Activity Interrupt Flag bit 1 = Interrupt Request Enabled 0 = Interrupt Request not enabled
bit 5	ERRIE: Error Interrupt Enable bit
	1 = Interrupt Request Enabled0 = Interrupt Request not enabled
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIE : FIFO Almost Full Interrupt Enable bit 1 = Interrupt Request Enabled 0 = Interrupt Request not enabled
bit 2	RBOVIE : RX Buffer Overflow Interrupt Enable bit 1 = Interrupt Request Enabled 0 = Interrupt Request not enabled
bit 1	RBIE: RX Buffer Interrupt Enable bit 1 = Interrupt Request Enabled 0 = Interrupt Request not enabled
bit 0	TBIE : TX Buffer Interrupt Enable bit 1 = Interrupt Request Enabled 0 = Interrupt Request not enabled

REGISTER 18-8: CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TERRCNT<7:0>								
bit 15								

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
RERRCNT<7:0>								
bit 7 bit								

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-8 **TERRCNT<7:0>:** Transmit Error Count bits bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 18-9: CICFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>		BRP<5:0>				
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-6 **SJW<1:0>:** Synchronization Jump Width bits

11 = Length is 4 x TQ

10 = Length is 3 x TQ

01 = Length is 2 x TQ

 $00 = \text{Length is } 1 \times \text{TQ}$

bit 5-0 BRP<5:0>: Baud Rate Prescaler bits

11 1111 = TQ = 2 x 64 x 1/FCAN

•

•

00 0010 = TQ = 2 x 3 x 1/FCAN

00 0001 = TQ = 2 x 2 x 1/FCAN

00 0000 = TQ = 2 x 1 x 1/FCAN

REGISTER 18-10: CICFG2: ECAN™ BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	WAKFIL	_	_	_	;	SEG2PH<2:0>	
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM	;	SEG1PH<2:0>	,		PRSEG<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 WAKFIL: Select CAN bus Line Filter for Wake-up bit

1 = Use CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 13-11 **Unimplemented:** Read as '0'

bit 10-8 **SEG2PH<2:0>:** Phase Segment 2 bits

111 = Length is 8 x TQ

•

.

000 = Length is 1 x TQ

bit 7 SEG2PHTS: Phase Segment 2 Time Select bit

1 = Freely programmable

0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater

bit 6 SAM: Sample of the CAN bus Line bit

1 = Bus line is sampled three times at the sample point

0 = Bus line is sampled once at the sample point

bit 5-3 **SEG1PH<2:0>:** Phase Segment 1 bits

111 = Length is 8 x TQ

•

•

 $000 = \text{Length is } 1 \times \text{TQ}$

bit 2-0 PRSEG<2:0>: Propagation Time Segment bits

111 = Length is 8 x TQ

•

•

•

000 = Length is 1 x TQ

REGISTER 18-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend: C = Writeable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 18-12: CIBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BP<	<3:0>		F2BP<3:0>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F1BP<	<3:0>		F0BP<3:0>				
bit 7							bit 0	

Legend: C = Writeable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 F3BP<3:0>: RX Buffer mask for Filter 3

1111 = Filter hits received in RX FIFO buffer

1110 = Filter hits received in RX Buffer 14

•

•

0001 = Filter hits received in RX Buffer 1

0000 = Filter hits received in RX Buffer 0

bit 11-8 **F2BP<3:0>:** RX Buffer mask for Filter 2 (same values as bit 15-12)

bit 7-4 **F1BP<3:0>:** RX Buffer mask for Filter 1 (same values as bit 15-12)

bit 3-0 **F0BP<3:0>:** RX Buffer mask for Filter 0 (same values as bit 15-12)

REGISTER 18-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BP<	<3:0>		F6BP<3:0>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BP<	<3:0>		F4BP<3:0>				
bit 7							bit 0	

Legend: C = Writeable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 F7BP<3:0>: RX Buffer mask for Filter 7

1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14

•

•

•

0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

bit 11-8

F6BP<3:0>: RX Buffer mask for Filter 6 (same values as bit 15-12)
bit 7-4

F5BP<3:0>: RX Buffer mask for Filter 5 (same values as bit 15-12)
bit 3-0

F4BP<3:0>: RX Buffer mask for Filter 4 (same values as bit 15-12)

REGISTER 18-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11BP	<3:0>		F10BP<3:0>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F9BP<	<3:0>		F8BP<3:0>				
bit 7							bit 0	

Legend:	C = Writeable bit, but only '	C = Writeable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-12 F11BP<3:0>: RX Buffer mask for Filter 11

1111 = Filter hits received in RX FIFO buffer

1110 = Filter hits received in RX Buffer 14

•

•

0001 = Filter hits received in RX Buffer 1

0000 = Filter hits received in RX Buffer 0

bit 11-8 F10BP<3:0>: RX Buffer mask for Filter 10 (same values as bit 15-12)

bit 7-4 **F9BP<3:0>:** RX Buffer mask for Filter 9 (same values as bit 15-12) bit 3-0 **F8BP<3:0>:** RX Buffer mask for Filter 8 (same values as bit 15-12)

REGISTER 18-15: CIBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15BP	<3:0>		F14BP<3:0>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F13BP	<3:0>		F12BP<3:0>				
bit 7							bit 0	

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-12 **F15BP<3:0>:** RX Buffer mask for Filter 15

1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14

•

•

0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

bit 11-8 F14BP<3:0>: RX Buffer mask for Filter 14 (same values as bit 15-12) bit 7-4 F13BP<3:0>: RX Buffer mask for Filter 13 (same values as bit 15-12) bit 3-0 F12BP<3:0>: RX Buffer mask for Filter 12 (same values as bit 15-12)

REGISTER 18-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	EXIDE	_	EID17	EID16
bit 7							bit 0

Legend:	C = Writeable bit, but only '	0' can be written to clear the b	pit		
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-5 SID<10:0>: Standard Identifier bits

1 = Message address bit SIDx must be '1' to match filter 0 = Message address bit SIDx must be '0' to match filter

bit 4 Unimplemented: Read as '0'

bit 3 **EXIDE:** Extended Identifier Enable bit

If MIDE = 1 then:

1 = Match only messages with extended identifier addresses 0 = Match only messages with standard identifier addresses

If MIDE = 0 then: Ignore EXIDE bit.

bit 2 Unimplemented: Read as '0'

bit 1-0 **EID<17:16>:** Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

REGISTER 18-17: CIRXFnEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER n (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit	r, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15-0 **EID<15:0>:** Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

REGISTER 18-18: CIFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK<1:0> F6MSK		<<1:0>	F5MS	K<1:0>	F4MSI	K<1:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3MSK	F3MSK<1:0> F2MSK<1:0>		<<1:0>	F1MS	F1MSK<1:0>		F0MSK<1:0>	
bit 7							bit 0	

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

F7MSK<1:0>: Mask Source for Filter / bit
11 = No mask
10 = Acceptance Mask 2 registers contain mask
01 = Acceptance Mask 1 registers contain mask
00 = Acceptance Mask 0 registers contain mask
F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)
F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)
F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)
F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)
F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)
F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)
F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)

ETMON 44.05 . Mook Course for Eilter 7 bit

REGISTER 18-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15MSK<1:0> F14MSK<1:0		K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MSK<1:0> F10MS		F10MS	K<1:0>	F9MS	K<1:0>	F8MSł	<<1:0>
bit 7							bit 0

Legend:	C = Writeable bit, but only	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-14	F15MSK<1:0>: Mask Source for Filter 15 bit 11 = No mask
	10 = Acceptance Mask 2 registers contain mask
	01 = Acceptance Mask 1 registers contain mask
	00 = Acceptance Mask 0 registers contain mask
bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)
bit 11-10	F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14)
bit 9-8	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)
bit 7-6	F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)
bit 3-2	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)
bit 1-0	F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

REGISTER 18-20: CIRXMnSID: ECAN™ ACCEPTANCE FILTER MASK STANDARD IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	MIDE	_	EID17	EID16
bit 7							bit 0

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-5 SID<10:0>: Standard Identifier bits

1 = Include bit SIDx in filter comparison

0 = Bit SIDx is don't care in filter comparison

bit 4 **Unimplemented:** Read as '0'

bit 3 MIDE: Identifier Receive Mode bit

1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter

0 = Match either standard or extended address message if filters match

(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))

bit 2 Unimplemented: Read as '0'

bit 1-0 EID<17:16>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 18-21: CIRXMnEID: ECAN™ ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **EID<15:0>:** Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 18-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 18-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 18-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15	•	•					bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 18-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:C = Writeable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 **RXOVF<31:16>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

REGISTER 18-26: CITRmnCON: ECAN™ Tx/Rx BUFFER m CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>
bit 15	•	•					bit 8

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	RI<1:0>
bit 7							bit 0

Legend:	C = Writeable bit, but	C = Writeable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-8	See Definition for Bits 7-0, Controls Buffer n
bit 7	TXENm: TX/RX Buffer Selection bit
	1 = Buffer TRBn is a transmit buffer
	0 = Buffer TRBn is a receive buffer
bit 6	TXABTm: Message Aborted bit ⁽¹⁾

1 = Message was aborted

0 = Message completed transmission successfully

bit 5 **TXLARBm:** Message Lost Arbitration bit⁽¹⁾
1 = Message lost arbitration while being sent

0 = Message did not lose arbitration while being sent

bit 4 TXERRm: Error Detected During Transmission bit⁽¹⁾

1 = A bus error occurred while the message was being sent 0 = A bus error did not occur while the message was being sent

bit 3 TXREQm: Message Send Request bit

1 = Requests that a message be sent. The bit automatically clears when the message is successfully sent.

0 = Clearing the bit to '0' while set requests a message abort.

bit 2 RTRENm: Auto-Remote Transmit Enable bit

1 = When a remote transmit is received, TXREQ will be set

0 = When a remote transmit is received, TXREQ will be unaffected

bit 1-0 **TXmPRI<1:0>:** Message Transmission Priority bits

11 = Highest message priority

10 = High intermediate message priority 01 = Low intermediate message priority

00 = Lowest message priority

Note 1: This bit is cleared when TXREQ is set.

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

18.4 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN special function registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 18-1: ECAN[™] MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'
bit 12-2 SID<10:0>: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit

1 = Message will request remote transmission

0 = Normal message

bit 0 **IDE:** Extended Identifier bit

1 = Message will transmit extended identifier0 = Message will transmit standard identifier

BUFFER 18-2: ECAN[™] MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
_	_		_	EID17	EID16	EID15	EID14
bit 15		_				_	bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID13 | EID12 | EID11 | EID10 | EID9 | EID8 | EID7 | EID6 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0' bit 11-0 **EID<17:6>:** Extended Identifier bits

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 231

BUFFER 18-3: ECAN[™] MESSAGE BUFFER WORD 2

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8

U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 **EID<5:0>:** Extended Identifier bits bit 9 **RTR:** Remote Transmission Request bit

1 = Message will request remote transmission

0 = Normal message

bit 8 RB1: Reserved Bit 1

User must set this bit to '0' per CAN protocol.

bit 7-5 **Unimplemented:** Read as '0'

bit 4 RB0: Reserved Bit 0

User must set this bit to '0' per CAN protocol.

bit 3-0 **DLC<3:0>:** Data Length Code bits

BUFFER 18-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
Byte 1								
bit 15							bit 8	

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 0			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimplem	nented bit, read	l as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	n

bit 15-8 **Byte 1<15:8>:** ECAN™ Message Byte 0 bit 7-0 **Byte 0<7:0>:** ECAN Message Byte 1

BUFFER 18-5: ECAN[™] MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
	Byte 3								
bit 15							bit 8		

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 2			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	1

bit 15-8 **Byte 3<15:8>:** ECAN™ Message Byte 3 bit 7-0 **Byte 2<7:0>:** ECAN Message Byte 2

BUFFER 18-6: ECAN[™] MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 5									
bit 15	bit 15 bit 8								

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
Byte 4								
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	n	

bit 15-8 **Byte 5<15:8>:** ECAN™ Message Byte 5 bit 7-0 **Byte 4<7:0>:** ECAN Message Byte 4

BUFFER 18-7: ECAN[™] MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Byt	e 7			
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 6			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknowr	า

bit 15-8 **Byte 7<15:8>:** ECAN™ Message Byte 7 bit 7-0 **Byte 6<7:0>:** ECAN Message Byte 6

BUFFER 18-8: ECAN[™] MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_			FILHIT<4:0> ⁽¹)	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

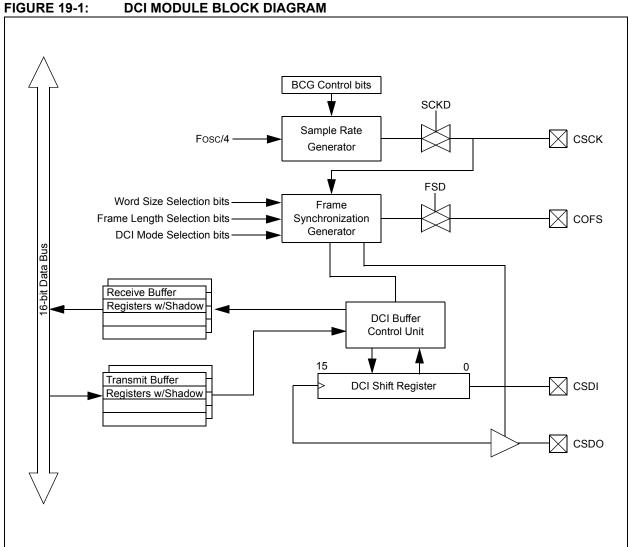
bit 15-13 **Unimplemented:** Read as '0' bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 **Unimplemented:** Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

19.0 **DATA CONVERTER INTERFACE (DCI) MODULE**


Note:

This data sheet summarizes the features the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04. dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the dsPIC33F Family Reference Manual, which is available from the Microchip website (www.microchip.com)

19.1 **Module Introduction**

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/ X04, and dsPIC33FJ128GPX02/X04 Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported:

- · Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- · AC-Link Compliant mode
- The DCI module provides the following general features:
- Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- · Data buffering for up to 4 samples without CPU overhead

REGISTER 19-1: DCICON1: DCI CONTROL REGISTER 1

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DCIEN	_	DCISIDL	_	DLOOP	CSCKD	CSCKE	COFSD
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
UNFM	CSDOM	DJST	_	_	_	COFSI	M<1:0>
bit 7							bit 0

Lea	end	١

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 DCIEN: DCI Module Enable bit

1 = Module is enabled

0 = Module is disabled

bit 14 Reserved: Read as '0'

bit 13 DCISIDL: DCI Stop in Idle Control bit

1 = Module will halt in CPU Idle mode

0 = Module will continue to operate in CPU Idle mode

bit 12 **Reserved:** Read as '0'

bit 11 DLOOP: Digital Loopback Mode Control bit

1 = Digital Loopback mode is enabled. CSDI and CSDO pins internally connected.

0 = Digital Loopback mode is disabled

bit 10 CSCKD: Sample Clock Direction Control bit

1 = CSCK pin is an input when DCI module is enabled

0 = CSCK pin is an output when DCI module is enabled

bit 9 CSCKE: Sample Clock Edge Control bit

1 = Data changes on serial clock falling edge, sampled on serial clock rising edge

0 = Data changes on serial clock rising edge, sampled on serial clock falling edge

bit 8 COFSD: Frame Synchronization Direction Control bit

1 = COFS pin is an input when DCI module is enabled

0 = COFS pin is an output when DCI module is enabled

bit 7 UNFM: Underflow Mode bit

1 = Transmit last value written to the transmit registers on a transmit underflow

0 = Transmit '0's on a transmit underflow

bit 6 **CSDOM:** Serial Data Output Mode bit

1 = CSDO pin will be tri-stated during disabled transmit time slots

0 = CSDO pin drives '0's during disabled transmit time slots

bit 5 DJST: DCI Data Justification Control bit

1 = Data transmission/reception is begun during the same serial clock cycle as the frame synchronization pulse

0 = Data transmission/reception is begun one serial clock cycle after frame synchronization pulse

bit 4-2 **Reserved:** Read as '0'

bit 1-0 **COFSM<1:0>:** Frame Sync Mode bits

11 = 20-bit AC-Link mode

10 = 16-bit AC-Link mode

 $01 = I^2S$ Frame Sync mode

00 = Multi-Channel Frame Sync mode

REGISTER 19-2: DCICON2: DCI CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
_	_	_	_	BLEN	N<1:0>	_	COFSG3
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	COFSG<2:0>		_		WS<	:3:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Reserved:** Read as '0'

bit 11-10 BLEN<1:0>: Buffer Length Control bits

11 = Four data words will be buffered between interrupts

10 = Three data words will be buffered between interrupts

01 = Two data words will be buffered between interrupts

00 = One data word will be buffered between interrupts

bit 9 Reserved: Read as '0'

bit 8-5 **COFSG<3:0>:** Frame Sync Generator Control bits

1111 = Data frame has 16 words

•

•

0010 = Data frame has 3 words

0010 Bata frame has 2 wards

0001 = Data frame has 2 words

0000 = Data frame has 1 word

bit 4 Reserved: Read as '0'

bit 3-0 WS<3:0>: DCI Data Word Size bits

1111 = Data word size is 16 bits

•

.

•

0100 = Data word size is 5 bits

0011 = Data word size is 4 bits

0010 = Invalid Selection. Do not use. Unexpected results may occur.

0001 = Invalid Selection. Do not use. Unexpected results may occur.

0000 = Invalid Selection. Do not use. Unexpected results may occur.

REGISTER 19-3: DCICON3: DCI CONTROL REGISTER 3

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_		BCG<	:11:8>	
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | BCG- | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Reserved:** Read as '0'

bit 11-0 BCG<11:0>: DCI bit Clock Generator Control bits

REGISTER 19-4: DCISTAT: DCI STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_		SLOT	<3:0>	
bit 15							bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_	ROV	RFUL	TUNF	TMPTY
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Reserved:** Read as '0'

bit 11-8 SLOT<3:0>: DCI Slot Status bits

1111 = Slot 15 is currently active

•

•

0010 = Slot 2 is currently active

0001 = Slot 1 is currently active

0000 = Slot 0 is currently active

bit 7-4 Reserved: Read as '0'

bit 3 ROV: Receive Overflow Status bit

1 = A receive overflow has occurred for at least one receive register

0 = A receive overflow has not occurred

bit 2 RFUL: Receive Buffer Full Status bit

1 = New data is available in the receive registers

0 = The receive registers have old data

bit 1 **TUNF:** Transmit Buffer Underflow Status bit

1 = A transmit underflow has occurred for at least one transmit register

0 = A transmit underflow has not occurred

bit 0 TMPTY: Transmit Buffer Empty Status bit

1 = The transmit registers are empty

0 = The transmit registers are not empty

REGISTER 19-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RSE7 | RSE6 | RSE5 | RSE4 | RSE3 | RSE2 | RSE1 | RSE0 |
| bit 7 | NOLU | TOLO | NOL4 | NOLO | NOLZ | NOL1 | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 19-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 TSE<15:0>: Transmit Slot Enable Control bits

1 = Transmit buffer contents are sent during the individual time slot n

0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC1)

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 16. Analog-to-Digital Converter (ADC)" (DS70183), which is available from the Microchip website (www.microchip.com).

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices have up to 13 ADC input channels.

The AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- · Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 13 analog input pins
- · External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- · Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the ADC can have up to 13 analog input pins, designated AN0 through AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

Block diagrams of the ADC module are shown in Figure 20-1 and Figure 20-2.

20.2 ADC Initialization

The following configuration steps should be performed.

- Configure the ADC module:
 - Select port pins as analog inputs (AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - Select voltage reference source to match expected range on analog inputs (AD1CON2<15:13>)
 - Select the analog conversion clock to match desired data rate with processor clock (AD1CON3<7:0>)
 - d) Determine how many S/H channels are used (AD1CON2<9:8> and AD1PCFGH<15:0> or AD1PCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>)
 - f) Select how conversion results are presented in the buffer (AD1CON1<9:8>)
 - g) Turn on ADC module (AD1CON1<15>)
- 2. Configure ADC interrupt (if required):
 - a) Clear the AD1IF bit
 - b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. ADC1 can trigger a DMA data transfer. If ADC1 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF bit gets set as a result of an ADC1 sample conversion sequence.

The SMPI<3:0> bits (AD1CON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (AD1CON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA standalone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

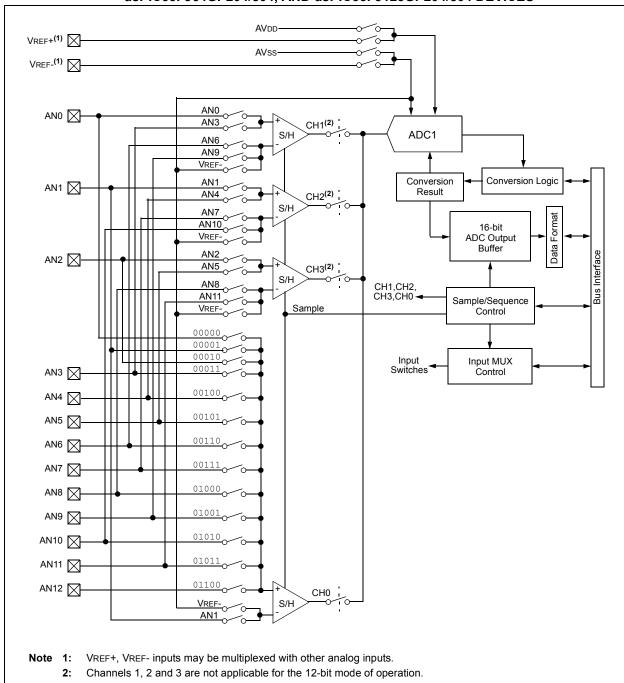
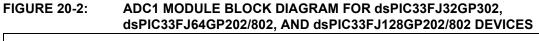
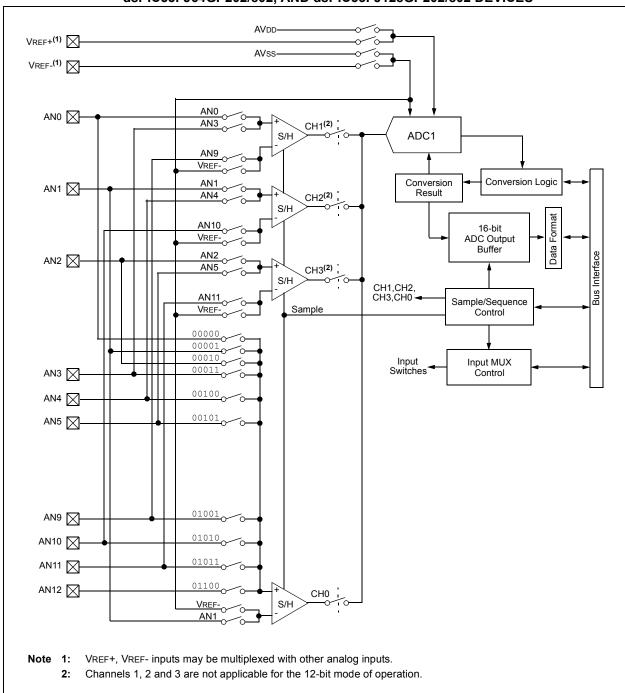
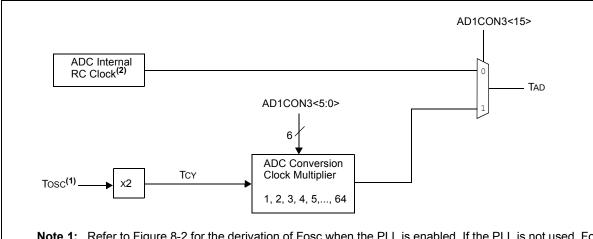





FIGURE 20-1: ADC1 MODULE BLOCK DIAGRAM FOR dsPIC33FJ32GP304, dsPIC33FJ64GP204/804, AND dsPIC33FJ128GP204/804 DEVICES

FIGURE 20-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

- **Note 1:** Refer to Figure 8-2 for the derivation of Fosc when the PLL is enabled. If the PLL is not used, Fosc is equal to the clock source frequency. Tosc = 1/Fosc.
 - 2: See the ADC electrical characteristics for the exact RC clock value.

REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	ADDMABM	-	AD12B	FORM	<1:0>
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC,HS	HC, HS
	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

Legend:	HC = Cleared by hardware	HS = Set by hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 ADON: ADC Operating Mode bit

1 = ADC module is operating

0 = ADC is off

bit 14 **Unimplemented:** Read as '0'

bit 13 ADSIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12 ADDMABM: DMA Buffer Build Mode bit

1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer.

0 = DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

bit 11 **Unimplemented:** Read as '0'

bit 10 AD12B: 10-bit or 12-bit Operation Mode bit

1 = 12-bit, 1-channel ADC operation

0 = 10-bit, 4-channel ADC operation

bit 9-8 **FORM<1:0>:** Data Output Format bits

For 10-bit operation:

11 = Signed fractional (Dout = sddd dddd dd00 0000, where s =.NOT.d<9>)

10 = Fractional (Dout = dddd dddd dd00 0000)

01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)

00 = Integer (Dout = 0000 00dd dddd dddd)

For 12-bit operation:

11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)

10 = Fractional (Dout = dddd dddd dddd 0000)

01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>)

00 = Integer (Dout = 0000 dddd dddd dddd)

bit 7-5 SSRC<2:0>: Sample Clock Source Select bits

111 = Internal counter ends sampling and starts conversion (auto-convert)

110 = Reserved

101 = Reserved

100 = GP timer (Timer5 for ADC1) compare ends sampling and starts conversion

011 = Reserved

010 = GP timer (Timer3 for ADC1) compare ends sampling and starts conversion

001 = Active transition on INT pin ends sampling and starts conversion

000 = Clearing sample bit ends sampling and starts conversion

bit 4 **Unimplemented:** Read as '0'

REGISTER 20-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)

When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0'

1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)

0 = Samples multiple channels individually in sequence

bit 2 ASAM: ADC Sample Auto-Start bit

1 = Sampling begins immediately after last conversion. SAMP bit is auto-set.

0 = Sampling begins when SAMP bit is set

bit 1 **SAMP:** ADC Sample Enable bit

1 = ADC sample/hold amplifiers are sampling0 = ADC sample/hold amplifiers are holding

If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC \neq 000, automatically cleared by hardware to end sampling and start conversion.

bit 0 **DONE:** ADC Conversion Status bit

1 = ADC conversion cycle is completed.

0 = ADC conversion not started or in progress

Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.

REGISTER 20-2: AD1CON2: ADC1 CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:0>		_	_	CSCNA	CHPS	<1:0>
bit 15							bit 8

R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	_		SMPI	<3:0>		BUFM	ALTS
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits

	ADREF+	ADREF-
000	AVDD	Avss
001	External VREF+	Avss
010	Avdd	External VREF-
011	External VREF+	External VREF-
1xx	Avdd	Avss

bit 12-11 **Unimplemented:** Read as '0'

bit 10 CSCNA: Scan Input Selections for CH0+ during Sample A bit

1 = Scan inputs

0 = Do not scan inputs

bit 9-8 CHPS<1:0>: Selects Channels Utilized bits

When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as '0'

1x = Converts CH0, CH1, CH2 and CH3

01 = Converts CH0 and CH1

00 = Converts CH0

bit 7 **BUFS:** Buffer Fill Status bit (only valid when BUFM = 1)

1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7

0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 **SMPI<3:0>:** Selects Increment Rate for DMA Addresses bits or number of sample/conversion operations per interrupt.

1111 = Increments the DMA address or generates interrupt after completion of every 16th sample/conversion operation

1110 = Increments the DMA address or generates interrupt after completion of every 15th sample/conversion operation

•

_

0001 = Increments the DMA address after completion of every 2nd sample/conversion operation

0000 = Increments the DMA address after completion of every sample/conversion operation

bit 1 BUFM: Buffer Fill Mode Select bit

1 = Starts buffer filling at address 0x0 on first interrupt and 0x8 on next interrupt

0 = Always starts filling buffer at address 0x0

bit 0 ALTS: Alternate Input Sample Mode Select bit

1 = Uses channel input selects for Sample A on first sample and Sample B on next sample

0 = Always uses channel input selects for Sample A

REGISTER 20-3: AD1CON3: ADC1 CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_	_			SAMC<4:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCS<7:0>									
bit 7									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ADRC: ADC Conversion Clock Source bit

1 = ADC internal RC clock

0 = Clock derived from system clock

bit 14-13 **Unimplemented:** Read as '0'

bit 12-8 **SAMC<4:0>:** Auto Sample Time bits

11111 = **31** TAD

•

00001 **= 1 TAD**

00000 **= 0** TAD

bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits

111111111 = Tcy \cdot (ADCS<7:0> + 1) = 256 \cdot Tcy = TAD

•

•

•

00000010 = Tcy \cdot (ADCS<7:0> + 1) = 3 \cdot Tcy = TaD

 $00000001 = Tcy \cdot (ADCS < 7:0 > + 1) = 2 \cdot Tcy = Tad$

 $000000000 = Tcy \cdot (ADCS < 7:0 > + 1) = 1 \cdot Tcy = Tad$

REGISTER 20-4: AD1CON4: ADC1 CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_		DMABL<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input 010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

REGISTER 20-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	CH123NB<1:0>		CH123SB
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	CH123NA<1:0>		CH123SA
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits

When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0'

11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11 10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8⁽¹⁾

0x = CH1, CH2, CH3 negative input is VREF-

bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit

When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0'

1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

bit 7-3 **Unimplemented:** Read as '0'

bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits

When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0'

11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11

10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8⁽¹⁾

0x = CH1, CH2, CH3 negative input is VREF-

bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit

When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as '0'

1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

Note 1: This bit setting is Reserved in dsPIC33FJ128GPX02, dsPIC33FJ64GPX02, and dsPIC33FJGPX02 (28-pin) devices.

REGISTER 20-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	_	_			CH0SB<4:0>		
bit 15							bit 8

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	_	_			CH0SA<4:0>		
bit 7							bit 0

Legend:				
R = Readab	le bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
1.11.45	OHOND	Olean I O New Fred Land O	alast for Oscarla Blif	
bit 15	CH0NB:	Channel 0 Negative Input Se	elect for Sample B bit	
	Same de	finition as bit 7.		
bit 14-13	Unimple	mented: Read as '0'		

bit 12-8 **CH0SB<4:0>:** Channel 0 Positive Input Select for Sample B bits 01100 = Channel 0 positive input is AN12 01011 = Channel 0 positive input is AN11

•
01000 = Channel 0 positive input is AN8⁽¹⁾
00111 = Channel 0 positive input is AN7⁽¹⁾
00110 = Channel 0 positive input is AN6⁽¹⁾
•

00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0

bit 7 **CH0NA:** Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1

0 = Channel 0 negative input is VREF-

bit 6-5 **Unimplemented:** Read as '0'

bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits

01100 = Channel 0 positive input is AN12 01011 = Channel 0 positive input is AN11

•
01000 = Channel 0 positive input is AN8⁽¹⁾
00111 = Channel 0 positive input is AN7⁽¹⁾
00110 = Channel 0 positive input is AN6⁽¹⁾

•
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1
00000 = Channel 0 positive input is AN0

Note 1: These bit settings (AN6, AN7, and AN8) are reserved on dsPIC33FJ128GPX02, dsPIC33FJ64GPX02, and dsPIC33FJ32GPX02 (28-pin) devices.

REGISTER 20-7: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW(1)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15							bit 8

bit 7			I .				bit 0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
R/W-0							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-0 CSS<11:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan 0 = Skip ANx for input scan

Note 1: On dsPIC33FJ32GP302, dsPIC33FJ64GP202/802, and dsPIC33FJ128GP202/802 devices, all AD1CSSL bits can be selected by the user application. However, inputs selected for scan without a corresponding input on device converts VREF-.

REGISTER 20-8: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW(1,2)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-0 PCFG<12:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

Note 1: On dsPIC33FJ32GP302, dsPIC33FJ64GP202/802, and dsPIC33FJ128GP202/802 devices, all PCFG bits are R/W by user software. However, the PCFG bits are ignored on ports without a corresponding input on device.

2: This register affects the configuration port pins multiplexed with AN0-AN12.

21.0 AUDIO DIGITAL-TO-ANALOG CONVERTER (DAC)

Note:

This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33F Family Reference Manual*, "Section 33. Audio Digital-to-Analog Converter (DAC)", which is available from the Microchip website (www.microchip.com).

The Audio Digital-to-Analog Converter (DAC) module is a 16-bit Delta-Sigma signal converter designed for audio applications. It has two output channels, left and right to support stereo applications. Each DAC output channel provides three voltage outputs, positive DAC output, negative DAC output, and the midpoint voltage output for the dsPIC33FJ64GP804 and dsPIC33FJ128GP804 devices. The dsPIC33FJ64GP802 dsPIC33FJ128GP802 and devices provide positive DAC output and negative DAC output voltages. The positive and negative DAC outputs are differential about a midpoint voltage of approximately 1.65 volts to drive the speakers with a Bridge-Tied Load (BTL) configuration.

21.1 KEY FEATURES

- 16-bit resolution (14-bit accuracy)
- · Second-Order Digital Delta-Sigma Modulator
- · 256 X Over-Sampling Ratio
- 128-Tap FIR Current-Steering Analog Reconstruction Filter
- · 100 KSPS Maximum Sampling Rate
- · User controllable Sample Clock
- Input Frequency 45 kHz max
- Differential Analog Outputs
- Signal-To-Noise: 90 dB
- · 4-deep input Buffer
- · 16-bit Processor I/O, and DMA interfaces

21.2 DAC Module Operation

The functional block diagram of the Audio DAC module is shown in Figure 21-1. The Audio DAC module provides a 4-deep data input FIFO buffer for each output channel. If the DMA module and/or the processor cannot provide output data in a timely manner, and the FIFO becomes empty, the DAC accepts data from the DAC Default Data register (DACDFLT). This safety feature is useful for industrial control applications where the DAC output controls an important processor or machinery. The DACDFLT register should be initialized

with a "safe" output value. Often the safe output value is either the midpoint value (0x8000) or a zero value (0x0000).

The digital interpolator up-samples the input signals, where the over-sampling ratio is 256x which creates data points between the user supplied data points. The interpolator also includes processing by digital filters to provide "noise shaping" to move the converter noise above 20 kHZ (upper limit of the pass band). The output of the interpolator drives the Sigma-Delta modulator. The serial data bit stream from the Sigma-Delta modulator is processed by the reconstruction filter. The differential outputs of the reconstruction filter are amplified by Op Amps to provide the required 2 volts peak-to-peak voltage swing into a 1 kOhm load.

21.3 DAC Output Format

The DAC output data stream can be in a two's complement signed number format or as an unsigned number format

The Audio DAC module features the ability to accept the 16-bit input data in a two's complement signed number format or as an unsigned number format. The data formatting is controlled by the Data Format Control (FORM<8>) bit in the DAC1CON register. The supported formats are:

- 1 = Signed (two's complement)
- 0 = Unsigned

If the FORM bit is configured for "Unsigned data" then the user input data yields the following behavior:

- 0xFFFF = most positive output voltage
- 0x8000 = mid point output voltage
- 0x7FFF = a value just below the midpoint
- 0x0000 = minimum output voltage

If the FORM bit is configured for "signed data" then the user input data yields the following behavior:

- 0x7FFF = most positive output voltage
- 0x0000 = mid point output voltage
- 0xFFFF = value just below the midpoint
- 0x8000 = minimum output voltage

The Audio DAC provides an analog output proportional to the digital input value. The maximum 100,000 samples per second (100ksps) update rate provides good quality audio reproduction.

The Audio DAC provides differential Analog outputs whose common mode output voltage is a nominal 1.65 volts with a supply voltage of 3.3 volts. The voltage swing is approximately ±1 volt about the 1.65 volt midpoint or approximately 0.65 volts to 2.65 volts into a 1 kOhm load.

21.4 DAC CLOCK

The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator. The divisor ratio is programmed by clock divider

bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.

FIGURE 21-1: BLOCK DIAGRAM OF AUDIO DIGITAL-TO-ANALOG (DAC) CONVERTER

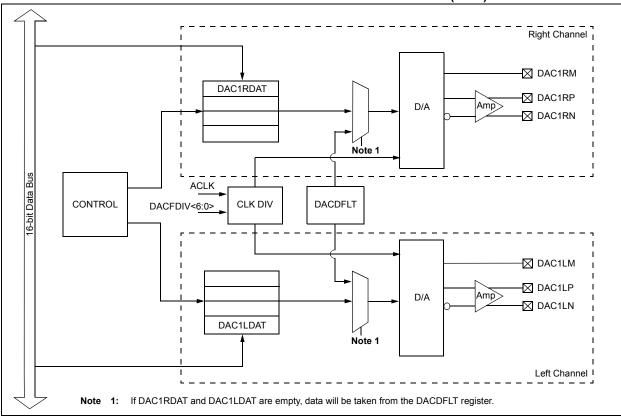
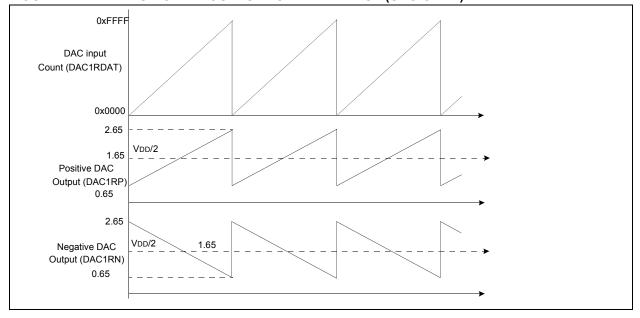



FIGURE 21-2: AUDIO DAC OUTPUT FOR RAMP INPUT (UNSIGNED)

REGISTER 21-1: DAC1CON: DAC CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
DACEN	_	DACSIDL	AMPON	_	_	_	FORM
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
_				DACFDIV<6:0)>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 DACEN: DAC1 Enable bit

1 = Enables module

0 = Disables module

bit 14 Unimplemented: Read as '0'

bit 13 DACSIDL: Stop in Ideal Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode.

bit 12 AMPON: Enable Analog Output Amplifier in Sleep Mode/Stop-in Idle Mode

1 = Analog Output Amplifier is enabled during Sleep Mode/Stop-in Idle mode

0 = Analog Output Amplifier is disabled during Sleep Mode/Stop-in Idle mode

bit 11-9 **Unimplemented:** Read as '0'

bit 8 FORM: Data Format Select bit

1 = Signed integer

0 = Unsigned integer

bit 7 Unimplemented: Read as '0'

bit 6-0 DACFDIV<6:0>: DAC Clock Divider.

1111111 = Divide input clock by 128

•

•

•

0000101 = Divide input clock by 6 (default)

•

•

•

0000010 = Divide input clock by 3

0000001 = Divide input clock by 2

0000000 = Divide input clock by 1 (no divide)

REGISTER 21-2: DAC1STAT: DAC STATUS REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
LOEN	_	LMVOEN	_	_	LITYPE	LFULL	LEMPTY
bit 15							bit 8

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
ROEN	_	RMVOEN	_	_	RITYPE	RFULL	REMPTY
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 LOEN: Left Channel DAC output enable

1 = Positive and negative DAC outputs are enabled.

0 = DAC outputs are disabled.

bit 14 Unimplemented: Read as '0'

bit 13 LMVOEN: Left Channel Midpoint DAC output voltage enable

1 = Midpoint DAC output is enabled.0 = Midpoint output is disabled.

bit 12-11 **Unimplemented:** Read as '0'

bit 10 LITYPE: Left Channel Type of Interrupt

1 = Interrupt if FIFO is EMPTY.0 = Interrupt if FIFO is NOT FULL.

bit 9 LFULL: Status, Left Channel Data input FIFO is FULL

1 = FIFO is Full. 0 = FIFO is not full.

bit 8 LEMPTY: Status, Left Channel Data input FIFO is EMPTY

1 = FIFO is Empty.0 = FIFO is not Empty.

bit 7 ROEN: Right Channel DAC output enable

1 = Positive and negative DAC outputs are enabled.

0 = DAC outputs are disabled.

bit 6 **Unimplemented:** Read as '0'

bit 5 RMVOEN: Right Channel Midpoint DAC output voltage enable

1 = Midpoint DAC output is enabled.0 = Midpoint output is disabled.

bit 4-3 **Unimplemented:** Read as '0'

bit 2 RITYPE: Right Channel Type of Interrupt

1 = Interrupt if FIFO is EMPTY. 0 = Interrupt if FIFO is NOT FULL.

bit 1 RFULL: Status, Right Channel Data input FIFO is FULL

1 = FIFO is Full.0 = FIFO is not full.

bit 0 REMPTY: Status, Right Channel Data input FIFO is EMPTY

1 = FIFO is Empty.0 = FIFO is not Empty.

REGISTER 21-3: DAC1DFLT: DAC DEFAULT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACDFL	_T<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACDF	LT<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 DACDFLT: DAC Default Value

REGISTER 21-4: DAC1LDAT: DAC LEFT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DACLDAT<15:8>							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACLD	AT<7:0>			ļ
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **DACLDAT:** Left Channel Data Port.

REGISTER 21-5: DAC1RDAT: DAC RIGHT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DACRDA	AT<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DACRDAT<7:0>							
bit 7							bit 0

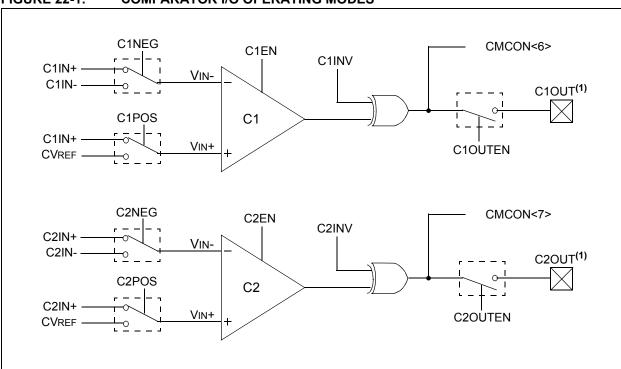
Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **DACRDAT:** Right Channel Data Port.

dsPIC33FJ32GP302/30	4, dsPIC33FJ64GF	X02/X04, AND dsF	PIC33FJ128GPX02/X04
NOTES:			


22.0 COMPARATOR MODULE

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 34. Comparator", which is available from the Microchip website (www.microchip.com).

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see "Peripheral Pin Select"

FIGURE 22-1: COMPARATOR I/O OPERATING MODES

Note 1: This peripheral's outputs must be assigned to an available RPn pin before use. Refer to **Section 10.4 "Peripheral Pin Select"** for more information.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 259

REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²⁾
bit 15							bit 8

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS
bit 7							bit 0

-n = Value at POR

Legend:

R = Readable bit

'1' = Bit is set '0' = Bit is cleared

x = Bit is unknown

bit 15 CMIDL: Stop in Idle Mode

1 = When device enters Idle mode, module does not generate interrupts. Module is still enabled.

U = Unimplemented bit, read as '0'

0 = Continue normal module operation in Idle mode

bit 14 Unimplemented: Read as '0'

bit 13 **C2EVT:** Comparator 2 Event

1 = Comparator output changed states

0 = Comparator output did not change states

W = Writable bit

C1EVT: Comparator 1 Event bit 12

1 = Comparator output changed states

0 = Comparator output did not change states

bit 11 C2EN: Comparator 2 Enable

1 = Comparator is enabled

0 = Comparator is disabled

bit 10 C1EN: Comparator 1 Enable

1 = Comparator is enabled

0 = Comparator is disabled

C2OUTEN: Comparator 2 Output Enable(1) bit 9

1 = Comparator output is driven on the output pad

0 = Comparator output is not driven on the output pad

C10UTEN: Comparator 1 Output Enable⁽²⁾ bit 8

1 = Comparator output is driven on the output pad

0 = Comparator output is not driven on the output pad

bit 7 **C2OUT:** Comparator 2 Output bit

When C2INV = 0:

1 = C2 VIN+ > C2 VIN-

0 = C2 VIN+ < C2 VIN-

When C2INV = 1:

0 = C2 VIN+ > C2 VIN-

1 = C2 VIN+ < C2 VIN-

Note 1: If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.

2: If C10UTEN = 1, the C10UT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.

REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6 C10UT: Comparator 1 Output bit

When C1INV = 0: 1 = C1 VIN+ > C1 VIN-0 = C1 VIN+ < C1 VIN-When C1INV = 1: 0 = C1 VIN+ > C1 VIN-1 = C1 VIN+ < C1 VIN-

bit 5 C2INV: Comparator 2 Output Inversion bit

1 = C2 output inverted0 = C2 output not inverted

bit 4 C1INV: Comparator 1 Output Inversion bit

1 = C1 output inverted0 = C1 output not inverted

bit 3 C2NEG: Comparator 2 Negative Input Configure bit

1 = Input is connected to VIN+ 0 = Input is connected to VIN-

See Figure 22-1 for the comparator modes.

bit 2 C2POS: Comparator 2 Positive Input Configure bit

1 = Input is connected to VIN+0 = Input is connected to CVREF

See Figure 22-1 for the comparator modes.

bit 1 C1NEG: Comparator 1 Negative Input Configure bit

1 = Input is connected to VIN+ 0 = Input is connected to VIN-

See Figure 22-1 for the comparator modes.

bit 0 **C1POS:** Comparator 1 Positive Input Configure bit

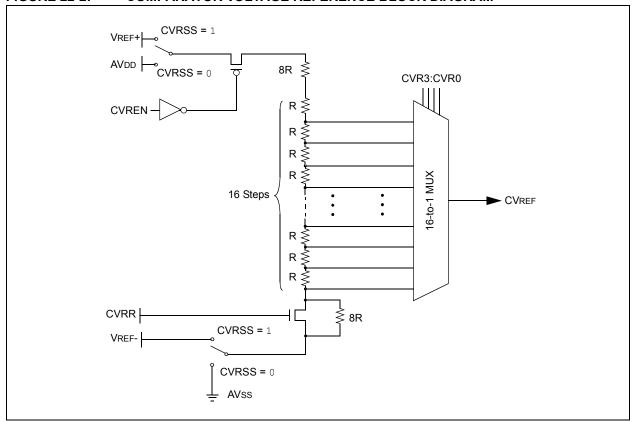
1 = Input is connected to VIN+0 = Input is connected to CVREF

See Figure 22-1 for the comparator modes.

Note 1: If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.

2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 10.4 "Peripheral Pin Select" for more information.

22.1 Comparator Voltage Reference


22.1.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The voltage reference module is controlled through the CVRCON register (Register 22-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 22-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 22-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CVREN | CVROE | CVRR | CVRSS | | CVR | <3:0> | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7 CVREN: Comparator Voltage Reference Enable bit

1 = CVREF circuit powered on0 = CVREF circuit powered down

bit 6 CVROE: Comparator VREF Output Enable bit

1 = CVREF voltage level is output on CVREF pin

0 = CVREF voltage level is disconnected from CVREF pin

bit 5 CVRR: Comparator VREF Range Selection bit

1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size

0 = CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size

bit 4 CVRSS: Comparator VREF Source Selection bit

1 = Comparator reference source CVRSRC = VREF+ - VREF-

0 = Comparator reference source CVRSRC = AVDD - AVSS

bit 3-0 **CVR<3:0>:** Comparator VREF Value Selection $0 \le CVR<3:0> \le 15$ bits

When CVRR = 1:

CVREF = (CVR<3:0>/ 24) • (CVRSRC)

When CVRR = 0:

CVREF = $1/4 \cdot (CVRSRC) + (CVR<3:0>/32) \cdot (CVRSRC)$

dsPIC33FJ32GP302/304, d	dsPIC33FJ64GPX02/X04,	AND dsPIC33FJ128GPX02/X04
NOTES:		

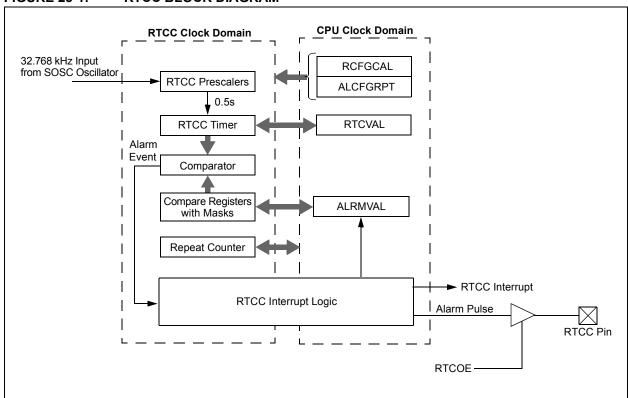
23.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note:

This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33F Family Reference Manual*, "Section 37. Real-Time Clock and Calendar (RTCC)", which is available from the Microchip website (www.microchip.com).

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices, and its operation. Listed below are some of the key features of this module:

- · Time: hours, minutes, and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month, and year


- · Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- · Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- · Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 23-1: RTCC BLOCK DIAGRAM

23.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- · RTCC Value Registers
- · Alarm Value Registers

23.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 23-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 23-1: RTCVAL REGISTER MAPPING

RTCPTR	RTCC Value Register Window					
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>				
0.0	MINUTES	SECONDS				
01	WEEKDAY	HOURS				
10	MONTH	DAY				
11	_	YEAR				

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 23-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 23-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Re	gister Window
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>
0.0	ALRMMIN	ALRMSEC
01	ALRMWD	ALRMHR
10	ALRMMNTH	ALRMDAY
11	_	_

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

23.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 23-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 23-1.

EXAMPLE 23-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
VOM	#0x55, W2	
VOM	#0xAA, W3	
VOM	W2, [W1]	;start 55/AA sequence
VOM	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

REGISTER 23-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	CAL<7:0>								
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	I as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 RTCEN: RTCC Enable bit⁽²⁾

1 = RTCC module is enabled0 = RTCC module is disabled

bit 14 Unimplemented: Read as '0'

bit 13 RTCWREN: RTCC Value Registers Write Enable bit

1 = RTCVALH and RTCVALL registers can be written to by the user

0 = RTCVALH and RTCVALL registers are locked out from being written to by the user

bit 12 RTCSYNC: RTCC Value Registers Read Synchronization bit

1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.

0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple

bit 11 **HALFSEC:** Half-Second Status bit⁽³⁾

1 = Second half period of a second

0 = First half period of a second

bit 10 RTCOE: RTCC Output Enable bit

1 = RTCC output enabled

0 = RTCC output disabled

bit 9-8 RTCPTR<1:0>: RTCC Value Register Window Pointer bits

Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registers; the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.

RTCVAL<15:8>:

00 = MINUTES

01 = WEEKDAY

10 **= MONTH**

11 = Reserved

RTCVAL<7:0>:

00 = SECONDS

01 = HOURS

10 = DAY

11 **= YEAR**

Note 1: The RCFGCAL register is only affected by a POR.

2: A write to the RTCEN bit is only allowed when RTCWREN = 1.

3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 23-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0 CAL<7:0>: RTC Drift Calibration bits

01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute

•

•

01111111 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute

00000000 = **No adjustment**

11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute

•

•

10000000 =Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 23-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 RTSECSEL: RTCC Seconds Clock Output Select bit⁽¹⁾

 $\tt 1$ = RTCC seconds clock is selected for the RTCC pin $\tt 0$ = RTCC alarm pulse is selected for the RTCC pin

bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit

1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

REGISTER 23-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMASK<3:0>				TR<1:0>
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | ARPT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **ALRMEN:** Alarm Enable bit

1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and CHIME = 0)

0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit

1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh

0 = Chime is disabled; ARPT<7:0> bits stop once they reach 00h

bit 13-10 **AMASK<3:0>:** Alarm Mask Configuration bits

0000 = Every half second

0001 = Every second

0010 = Every 10 seconds

0011 = Every minute

0100 = Every 10 minutes

0101 = Every hour

0110 **= Once a day**

0111 = Once a week

1000 = Once a month

1001 = Once a year (except when configured for February 29th, once every 4 years)

101x = Reserved - do not use

11xx = Reserved – do not use

bit 9-8 **ALRMPTR<1:0>:** Alarm Value Register Window Pointer bits

Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers; the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'.

ALRMVAL<15:8>:

00 = ALRMMIN

01 = ALRMWD

10 = ALRMMNTH

11 = Unimplemented

ALRMVAL<7:0>:

00 = ALRMSEC

01 = ALRMHR

10 = ALRMDAY

11 = Unimplemented

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits

11111111 = Alarm will repeat 255 more times

.

•

00000000 = Alarm will not repeat

The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

REGISTER 23-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
YRTEN<3:0>					YRON	E<3:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-4 YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9
bit 3-0 YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 23-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
_	_	_	MTHTEN0		MTHON	IE<3:0>	
bit 15					_		bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1

bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9

bit 7-6 **Unimplemented:** Read as '0'

bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3 bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 23-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	_	_	_	_		WDAY<2:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	HRTEN<1:0>		HRONE<3:0>				
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6

bit 7-6 Unimplemented: Read as '0'

bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2

bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 23-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		MINTEN<2:0>		MINONE<3:0>				
bit 15		_			_		bit 8	

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		SECTEN<2:0>		SECONE<3:0>				
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 **MINTEN<2:0>:** Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5 bit 11-8 **MINONE<3:0>:** Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9

bit 7 **Unimplemented:** Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5 bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

REGISTER 23-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1

bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9

bit 7-6 **Unimplemented:** Read as '0'

bit 5-4 **DAYTEN<1:0>:** Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3 bit 3-0 **DAYONE<3:0>:** Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 23-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	_	_	-	-	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	HRTE	N<1:0>	HRONE<3:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6

bit 7-6 **Unimplemented:** Read as '0'

bit 5-4 **HRTEN<1:0>:** Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2 bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 23-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		MINTEN<2:0>		MINONE<3:0>				
bit 15							bit 8	

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		SECTEN<2:0>		SECONE<3:0>				
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

24.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section 36. Programmable Cyclic Redundancy Check (CRC)", which is available from the Microchip website (www.microchip.com).

The programmable CRC generator offers the following features:

- · User-programmable polynomial CRC equation
- · Interrupt output
- · Data FIFO

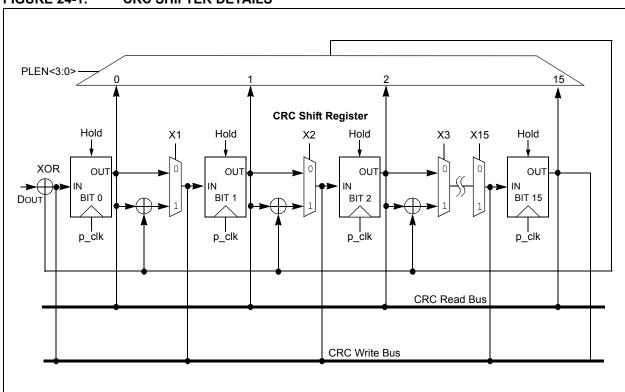
24.1 Overview

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR (X<15:1>) bits and the CRCCON (PLEN<3:0>) bits, respectively.

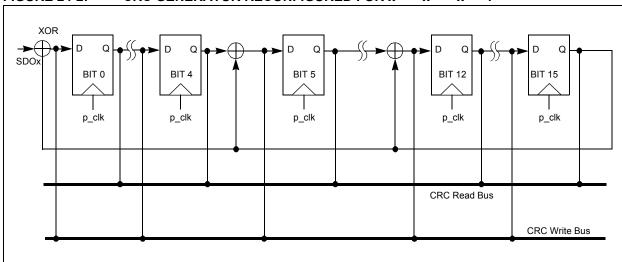
EQUATION 24-1: CRC EQUATION

$$x^{16} + x^{12} + x^{5} + 1$$

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 24-1.


TABLE 24-1: EXAMPLE CRC SETUP

Bit Name	Bit Value
PLEN<3:0>	1111
X<15:1>	00010000010000


For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 24-2.

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 275

FIGURE 24-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

24.2 User Interface

24.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<64:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 24.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

24.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

24.3 Operation in Power Save Modes

24.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

24.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

24.4 Registers

The CRC module provides the following registers:

- · CRC Control Register
- CRC XOR Polynomial Register

REGISTER 24-1: CRCCON: CRC CONTROL REGISTER

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
_	_	CSIDL			VWORD<4:0>	•	
bit 15							bit 8

R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	_	CRCGO		PLEN	<3:0>	
bit 7							bit 0

Lea	er	١d	:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13 CSIDL: CRC Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12-8 **VWORD<4:0>:** Pointer Value bits

Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> is

greater than 7, or 16 when PLEN<3:0> is less than or equal to 7.

bit 7 CRCFUL: FIFO Full bit

1 = FIFO is full 0 = FIFO is not full

bit 6 CRCMPT: FIFO Empty Bit

1 = FIFO is empty 0 = FIFO is not empty

bit 5 **Unimplemented:** Read as '0'

bit 4 CRCGO: Start CRC bit

1 = Start CRC serial shifter0 = CRC serial shifter turned off

bit 3-0 **PLEN<3:0>:** Polynomial Length bits

Denotes the length of the polynomial to be generated minus 1.

REGISTER 24-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<1	5:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit 0

Legend:

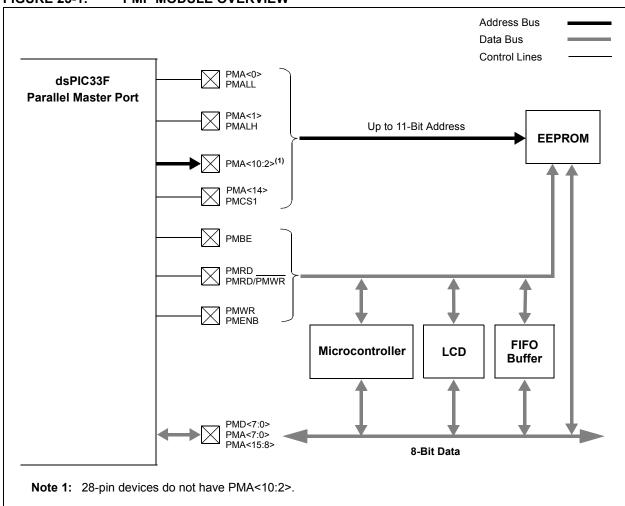
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 **Unimplemented:** Read as '0'

25.0 PARALLEL MASTER PORT (PMP)


Note: This data sheet summarizes the features the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04. dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33F Family Reference Manual, "Section Parallel Master Port (PMP)", which is available from the Microchip website (www.microchip.com).

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- · Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - up to 11 address lines with single chip select
 - up to 12 address lines without chip select
- · One Chip Select Line
- · Programmable Strobe Options
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- · Address Auto-Increment/Auto-Decrement
- · Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- Legacy Parallel Slave Port Support
- · Enhanced Parallel Slave Support
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- · Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 25-1: PMP MODULE OVERVIEW

REGISTER 25-1: PMCON: PARALLEL PORT CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0 ⁽¹⁾	U-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	_	CS1P	BEP	WRSP	RDSP
bit 7							bit 0

Legend:

bit 10

bit 7-6

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 PMPEN: Parallel Master Port Enable bit

1 = PMP enabled

0 = PMP disabled, no off-chip access performed

bit 14 **Unimplemented:** Read as '0'

bit 13 **PSIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode

0 = Continue module operation in Idle mode

bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits⁽¹⁾

11 = Reserved

10 = All 16 bits of address are multiplexed on PMD<7:0> pins

01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on

PMA<10:8>

00 = Address and data appear on separate pinsPTBEEN: Byte Enable Port Enable bit (16-bit Master mode)

1 = PMBE port enabled

0 = PMBE port disabled

bit 9 PTWREN: Write Enable Strobe Port Enable bit

1 = PMWR/PMENB port enabled

0 = PMWR/PMENB port disabled

bit 8 PTRDEN: Read/Write Strobe Port Enable bit

1 = PMRD/<u>PMWR</u> port enabled 0 = PMRD/<u>PMWR</u> port disabled

CSF1:CSF0: Chip Select Function bits

11 = Reserved

10 = PMCS1 functions as chip select

0x = PMCS1 functions as address bit 14

bit 5 **ALP:** Address Latch Polarity bit⁽¹⁾

1 = Active-high (PMALL and PMALH)

 $0 = Active-low (\overline{PMALL} \text{ and } \overline{PMALH})$

bit 4 Unimplemented: Read as '0'

bit 3 **CS1P:** Chip Select 1 Polarity bit⁽¹⁾

1 = Active-high (PMCS1/PMCS1)

0 = Active-low (PMCS1/PMCS1)

bit 2 **BEP:** Byte Enable Polarity bit

1 = Byte enable active-high (PMBE)

0 = Byte enable active-low (PMBE)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 25-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

bit 1 WRSP: Write Strobe Polarity bit

For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):

1 = Write strobe active-high (PMWR)
 0 = Write strobe active-low (PMWR)
 For Master mode 1 (PMMODE<9:8> = 11):
 1 = Enable strobe active-high (PMENB)

0 = Enable strobe active-low (PMENB)

bit 0 RDSP: Read Strobe Polarity bit

For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):

1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)

For Master mode 1 (PMMODE<9:8> = 11):

1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

Note 1: These bits have no effect when their corresponding pins are used as address lines.

Register 25-2: PMMODE: PARALLEL PORT MODE REGISTER

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQM	<1:0>	INCM	l<1:0>	MODE16	MODE	E<1:0>
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB4	<1:0> ⁽¹⁾		WAIT	M<3:0>		WAITE	<1:0> ⁽¹⁾
bit 7				bit 0			

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15 **BUSY:** Busy bit (Master mode only)

1 = Port is busy (not useful when the processor stall is active)

0 = Port is not busy

bit 14-13 **IRQM<1:0>:** Interrupt Request Mode bits

11 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> = 11 (Addressable PSP mode only)

10 = No interrupt generated, processor stall activated

01 = Interrupt generated at the end of the read/write cycle

00 = No interrupt generated

bit 12-11 INCM<1:0>: Increment Mode bits

11 = PSP read and write buffers auto-increment (Legacy PSP mode only)

10 = Decrement ADDR<10:0> by 1 every read/write cycle

01 = Increment ADDR<10:0> by 1 every read/write cycle

00 = No increment or decrement of address

bit 10 MODE16: 8/16-bit Mode bit

1 = 16-bit mode: data register is 16 bits, a read or write to the data register invokes two 8-bit transfers

0 = 8-bit mode: data register is 8 bits, a read or write to the data register invokes one 8-bit transfer

bit 9-8 **MODE<1:0>:** Parallel Port Mode Select bits

11 = Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA<x:0> and PMD<7:0>)

10 = Master mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA<x:0> and PMD<7:0>)

01 = Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>)

00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1 and PMD<7:0>)

bit 7-6 **WAITB<1:0>:** Data Setup to Read/Write Wait State Configuration bits⁽¹⁾

11 = Data wait of 4 Tcy; multiplexed address phase of 4 Tcy

10 = Data wait of 3 Tcy; multiplexed address phase of 3 Tcy

01 = Data wait of 2 Tcy; multiplexed address phase of 2 Tcy

00 = Data wait of 1 Tcy; multiplexed address phase of 1 Tcy

bit 5-2 WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits

1111 = Wait of additional 15 Tcy

•

0001 = Wait of additional 1 Tcy

0000 = No additional wait cycles (operation forced into one Tcy)

bit 1-0 **WAITE<1:0>:** Data Hold After Strobe Wait State Configuration bits⁽¹⁾

11 = Wait of 4 Tcy

10 = Wait of 3 Tcy

01 = Wait of 2 TcY

00 = Wait of 1 Tcy

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

REGISTER 25-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ADDR15	CS1		ADDR<13:8>							
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADDR<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ADDR15: Parallel Port Destination Address bits

bit 14 CS1: Chip Select 1 bit

1 = Chip select 1 is active

0 = Chip select 1 is inactive

bit 13-0 ADDR13:ADDR0: Parallel Port Destination Address bits

REGISTER 25-4: PMAEN: PARALLEL PORT ENABLE REGISTER

U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	PTEN14	_	_	_	PTEN<10:8> ⁽¹⁾		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN<7:2> ⁽¹⁾							l<1:0>
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14 PTEN14: PMCS1 Strobe Enable bit

1 = PMA14 functions as either PMA<14> bit or PMCS1

0 = PMA14 pin functions as port I/O

bit 13-11 **Unimplemented:** Read as '0'

bit 10-2 PTEN<10:2>: PMP Address Port Enable bits⁽¹⁾

1 = PMA<10:2> function as PMP address lines

0 = PMA<10:2> function as port I/O

bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits

1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL

0 = PMA1 and PMA0 pads functions as port I/O

Note 1: Devices with 28 pins do not have PMA<10:2>.

REGISTER 25-5: PMSTAT: PARALLEL PORT STATUS REGISTER

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0	
IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	
bit 15								

R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0

Legend:HS = Hardware Set bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15 **IBF:** Input Buffer Full Status bit

1 = All writable input buffer registers are full

0 = Some or all of the writable input buffer registers are empty

bit 14 **IBOV:** Input Buffer Overflow Status bit

1 = A write attempt to a full input byte register occurred (must be cleared in software)

0 = No overflow occurred

bit 13-12 **Unimplemented:** Read as '0'

bit 11-8 **IB3F:IB0F** Input Buffer x Status Full bits

1 = Input buffer contains data that has not been read (reading buffer will clear this bit)

0 = Input buffer does not contain any unread data

bit 7 **OBE:** Output Buffer Empty Status bit

1 = All readable output buffer registers are empty

0 = Some or all of the readable output buffer registers are full

bit 6 **OBUF:** Output Buffer Underflow Status bits

1 = A read occurred from an empty output byte register (must be cleared in software)

0 = No underflow occurred

bit 5-4 **Unimplemented:** Read as '0'

bit 3-0 **OB3E:OB0E** Output Buffer x Status Empty bit

1 = Output buffer is empty (writing data to the buffer will clear this bit)

0 = Output buffer contains data that has not been transmitted

REGISTER 25-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 RTSECSEL: RTCC Seconds Clock Output Select bit⁽¹⁾

 $\tt 1$ = RTCC seconds clock is selected for the RTCC pin $\tt 0$ = RTCC alarm pulse is selected for the RTCC pin

bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit

1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

dsPIC33FJ32	GP302/304, ds	PIC33FJ640	GPX02/X04, <i>I</i>	AND dsPIC33	FJ128GPX02	/X04
NOTES:						

26.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the dsPIC33F Family Reference Manual, which is available from the Microchip website (www.microchip.com).

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible configuration
- · Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming™ (ICSP™)
- In-Circuit emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the FBS, FGS, FOSCSEL, FOSC, FWDT, and FPOR Configuration registers are shown in Table 26-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

The Device Configuration register map is shown in Table 26-1.

TABLE 26-1: DEVICE CONFIGURATION REGISTER MAP

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS<	:1:0>	-	_		BSS<2:0>		BWRP
0xF80002	FSS	RSS<	:1:0>	_	_		SSS<2:0>		SWRP
0xF80004	FGS	_		_	_	_	GSS<1	:0>	GWRP
0xF80006	FOSCSEL	IESO		_	_	-	FNOSC<2:0>		
0xF80008	FOSC	FCKSM	1<1:0>	IOL1WAY	_	_	OSCIOFNC POSCMD<1:0		
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST<	<3:0>	
0xF8000C	FPOR	_		_	ALTI2C	_	FPW	/RT<2:0>	
0xF8000E	FICD	BKBUG	COE	JTAGEN	_	_	_	ICS<	:1:0>
0xF80010	FUID0				User Unit ID	Byte 0			
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2		•		User Unit ID	Byte 2		•	·
0xF80016	FUID3				User Unit ID	Byte 3			_

TABLE 26-2: dsPIC33F CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment
		Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE
		Boot space is 4K Instruction Words (except interrupt vectors)
		101 = Standard security; boot program Flash segment, ends at 0x001FFE
		001 = High security; boot program Flash segment ends at 0x001FFE
		Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE
(4)		000 = High security; boot program Flash segment ends at 0x003FFE
RBS<1:0> ⁽¹⁾	FBS	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes
		01 = Boot RAM is 256 bytes 00 = Boot RAM is 1024 bytes
SWRP	FSS	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) x11 = No Secure program flash segment
		Secure space is 4K IW less BS 110 = Standard security; secure program flash segment starts at End of BS, ends at 0x001FFE
		010 = High security; secure program flash segment starts at End of BS, ends at 0x001FFE
		Secure space is 8K IW less BS 101 = Standard security; secure program flash segment starts at End of BS, ends at 0x003FFE
		001 = High security; secure program flash segment starts at End of BS, ends at 0x003FFE
		Secure space is 16K IW less BS 100 = Standard security; secure program flash segment starts at End of BS, ends at 007FFEh
		000 = High security; secure program flash segment starts at End of BS, ends at 0x007FFE
RSS<1:0> ⁽¹⁾	FSS	Secure Segment RAM Code Protection 10 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM
		01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM

Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

TABLE 26-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32

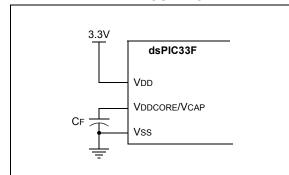
Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

TABLE 26-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description
WDTPOST<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
ALTI2C	FPOR	Alternate I ² C [™] pins 1 = I ² C mapped to SDA1/SCL1 pins 0 = I ² C mapped to ASDA1/ASCL1 pins
BKBUG	FICD	Background Debug Enable bit 1 = Device will reset in User mode 0 = Device will reset in Debug mode
COE	FICD	Debugger/Emulator Enable bit 1 = Device will reset in Operational mode 0 = Device will reset in Clip-On Emulation mode
JTAGEN	FICD	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGC1/EMUC1 and PGD1/EMUD1 10 = Communicate on PGC2/EMUC2 and PGD2/EMUD2 01 = Communicate on PGC3/EMUC3 and PGD3/EMUD3 00 = Reserved, do not use

Note 1: RAM Code Protection is only available on 64K and 128K devices and not implemented on 32K devices.

26.2 On-Chip Voltage Regulator


All of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VDDCORE/VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 29-13 located in **Section 29.1** "DC Characteristics".

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VDDCORE pin.

On a POR, it takes approximately 20 μs for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 26-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

- Note 1: These are typical operating voltages. Refer to Section TABLE 29-13: "Internal Voltage Regulator Specifications" located in Section 29.1 "DC Characteristics" for the full operating ranges of VDD and VDDCORE.
 - 2: It is important for the low-ESR capacitor to be placed as close as possible to the VDDCORE pin.

26.3 BOR: Brown-Out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

26.4 Watchdog Timer (WDT)

For dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

26.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

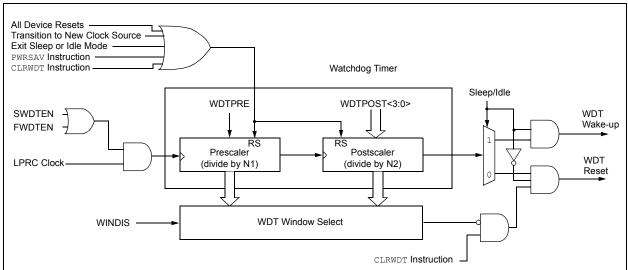
- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

26.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

26.4.3 ENABLING WDT


The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 26-2: WDT BLOCK DIAGRAM

26.5 JTAG Interface

dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70207) of the dsPIC33F Family Reference Manual for further information on usage, configuration and operation of the JTAG interface.

26.6 In-Circuit Serial Programming

The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGC1/EMUC1 and PGD1/EMUD1
- PGC2/EMUC2 and PGD2/EMUD2
- PGC3/EMUC3 and PGD3/EMUD3

26.7 In-Circuit Debugger

When MPLAB® ICD 2 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGC1/EMUC1 and PGD1/EMUD1
- PGC2/EMUC2 and PGD2/EMUD2
- PGC3/EMUC3 and PGD3/EMUD3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGC, PGD and the EMUDx/EMUCx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

26.8 Code Protection and CodeGuard™ Security

The dsPIC33FJ64GPX02/X04 and dsPIC33FJ128GPX02/X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the dsPIC33FJ32GP302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the dsPIC33FJ64GPX02/X04 and dsPIC33FJ128GPX02/X04 devices. The dsPIC33FJ32GP302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) of the dsPIC33F Family Reference Manual for further information on usage, configuration and operation of CodeGuard Security.

CODE FLASH SECURITY SEGMENT SIZES FOR 32K BYTE DEVICES **TABLE 26-3**:

CONFIG BITS	BSS<2:0> = x11 0K	:11 0K	BSS<2:0> = x10 1K	1K	BSS<2:0> = $x01$ 4K	:01 4K	BSS<2:0> = x00 8K	×00 8K
	VS = 256 IW	0x000000h 0x0001FEh	$VS = 256 \text{ IW} \qquad 0 \times 000$	0x000000h 0x0001FEh	VS = 256 IW	0x000000h 0x0001FEh	VS = 256 IW	0x000000h 0x0001FEh
		0x000200h 0x0007FEh 0x000800h	BS = 768 IW 0x00	0x000200h 0x0007FEh 0x000800h	BS = 3840 IW	0x000200h 0x0007FEh 0x000800h	BS = 7936 IW	0x000200h 0x0007FEh 0x000800h
222<2:0> = ×11		0x001FFEh 0x002000h	0000	0x001FFEN 0x002000h		0x001FFED 0x002000h		0x001FFEh 0x002000h
λO	GS = 11008 IW	0x003FFEh 0x004000h 0x0057FFh	GS = 10240 IW 0x00	0x003FFEh 0x004000h 0x0057FEh	GS = 7168 IW	0x003FFEh 0x004000h 0x0057FEh	GS = 3072 IW	0x003FFEh 0x004000h 0x0057EEh
				i i				
		0x0157FEh	0x0	0x0157FEh		0x0157FEh		0x0157FEh

0x0157FEh 0x0157FEh 0x0157FEh 0x0157FEh BSS<2:0> = x00GS = 13824 IW 3S = 13824 IW GS = 13824 IWBS = 7936 IWBS = 7936 IW BS = 7936 IW BS = 7936 IWGS = 5632 IWVS = 256 IWSS = 8192 IW VS = 256 IWVS = 256 IW= 256 IW0x0157FEh 0x0157FEh 0x0157FEh 0x0157FEh BSS<2:0> = x01GS = 17920 IWGS = 17920 IW= 13824 IW SS = 12288 IW BS = 3840 IW GS = 5632 IW BS = 3840 IW BS = 3840 IW SS = 4096 IWBS = 3840 IWVS = 256 IWVS = 256 IWVS = 256 IWVS = 256 IWSS CODE FLASH SECURITY SEGMENT SIZES FOR 64K BYTE DEVICES 0x0157FEh 0x0157FEh 0x0157FEh 0x0157FEh GS = 13824 IW SS = 15360 IWGS = 20992 IWGS = 17920 IWGS = 5632 IWSS = 3072 IW SS = 7168 IW VS = 256 IWVS = 256 IWBS = 768 IW VS = 256 IWVS = 256 IWBS = 768 IW BS = 768 IW BS = 768 IW0x000000h 0x0001FEh 0x0001FEh 0x0007FEh 0x001FEh 0x001FEh 0x004600h 0x008FEH 0x008FEH 0x0157FEh 0x0157FEh 0x0157FEh 0x0157FEh 웅 3S = 13824 IW GS = 21760 IWGS = 17920 IWSS = 16128 IWGS = 5632 IWSS = 3840 IW SS = 7936 IWVS = 256 IWVS = 256 IWVS = 256 IWVS = 256 IWSSS<2:0> = x00SS<2:0> = x10SSS<2:0> = x11SSS<2:0> = x01**CONFIG BITS FABLE 26-4:** 16K 쏭 夫

Preliminary

CODE FLASH SECURITY SEGMENT SIZES FOR 128K BYTE DEVICES **TABLE 26-5**:

IABLE 26-5: COD	CODE FLASH SECURIT SEGMEN	I SIZES FUR IZON BITE DEVICE	, LES	
CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11	VS = 256 IW 0x000000h 0x0001FEh 0x0001FEh 0x000200h 0x000200h 0x000200h 0x0020FFEh 0x0020FFEh 0x0020FFEh 0x0020FFEh 0x0020FFE 0x0020FFFE 0x0020FFFF 0x0020FFF 0x02020FFF 0x0020FFF 0x0020FFF 0x0020FFF 0x0020FFF 0x0020FFF 0x0020F	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x00000h 0x00000h 0x00000h 0x00000h 0x000000h 0x00000h 0x00000h 0x00000h 0x00000h 0x00000h 0x00000h 0x000000h	VS = 256 IW 0x000000h BS = 3840 IW 0x0001FEh 0x000200h 0x000800h 0x001FFEh 0x00200h 0x0037FFEh 0x0037FFFEH 0x0037FFFEH 0x0037FFFEH	VS = 256 IW 0x00000h BS = 7936 IW 0x0007FEh 0x000200h 0x003FFEh 0x00200h 0x003FFEh 0x003FFEh 0x003FFEh 0x003FFEh 0x003FFEh 0x003FFEh 0x004FFEh 0x008000h 0x003FFEh 0x008000h 0x003FFEh 0x008000h 0x008FFEh 0x008000h 0x008FFEH 0x008000h 0x008FFEH 0x008000h
SSS<2:0> = x10 4K	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x000200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x00200h 0x002000h 0x00000h 0x00000h 0x00000h 0x0000h 0x00000h 0x0000h 0x00000h 0x00000h 0x0000h 0x0000h 0x0000h 0x0000h 0	VS = 256 IW 0x00000h 0x0001 EN 0x000200h 0x000200h 0x0007 EN 0x0007 EN 0x0001 FEN 0x0020 EN 0x00	VS = 256 IW 0x00000h 0x0001FEh 0x000200h 0x000200h 0x000800h 0x000800h 0x001FEh 0x003FFEh 0x003FFEh 0x003FFEh 0x003FFEh 0x003FFEh 0x003FFEh 0x003FFEh 0x003FFEh 0x004000h 0x003FFEh 0x004000h 0x003FFEh 0x004000h 0x004FEh 0x004BFEh 0x004BFEh 0x004BFEh	VS = 256 IW 0x000000h 0x0001Eh 0x0001FEh 0x001FEh 0x001FEh 0x001FEh 0x001FEh 0x001FEh 0x001FEh 0x003FFEh 0x003FFEh 0x008000h 0x007FFEh 0x008000h 0x008FEh 0x008BEH 0x008BEH 0x008BEH 0x008BEH 0x008BEH 0x008BEH 0x001FFEh 0x001FFFEH 0x001FFFEH 0x001FFFEH 0x001FFFEH 0x001FFFEH 0x001FFFEH 0x001FFFEH 0x001FFFEH 0x001FFFEH 0x001FFFFH 0x001FFFH 0x001FFFFH 0x001FFFFH 0x001FFFH 0x001FF
SSS<2:0> = ×01 8K	VS = 256 IW 0x000000h 0x000200h 0x000200h 0x000200h 0x000300h 0x000300h 0x00300h 0x00300h 0x00300h 0x00300h 0x00000h	VS = 256 IW 0x000000h 0x0001FEh 0x000200h 0x000200h 0x0007FEh 0x000800h 0x001FFEh 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x002000h 0x0015FEh 0x008000h 0x0015FEh 0x0015FEh 0x0015FE	VS = 256 IW 0x00000h BS = 3840 IW 0x000200h Cx000200h Cx000200h Cx000200h Cx00200h Cx00200h Cx003FEh Cx003FFEh Cx003FFFEH Cx003FFFFEH Cx003FFFEH Cx003FFFEH Cx003FFFEH Cx003FFFEH Cx003FFFEH Cx003FFFEH Cx003FFFFH Cx003FFFFH Cx003FFFFH Cx003FFFFH Cx003FFFFH Cx003FFFFH Cx003FFFFH Cx003FFFFH Cx003FFFFH Cx003FFFH Cx003FFH Cx003FF	VS = 256 IW
SSS<2:0> = x00	VS = 256 IW 0x000000H 0x0001FEH 0x000200H 0x000200H 0x000200H 0x0003FEH 0x002000H 0x003FFEH 0x003FFFEH 0x003FFFFEH 0x003FFFFEH 0x003FFFFEH 0x003FFFFEH 0x003FFFFEH 0x003FFFFFH 0x003FFFFFH 0x003FFFFFH 0x003FFFFH 0x003FFFFFH 0x003FFFFH 0x003FFFH 0x003	VS = 256 IW 0x000000h 0x0001FEh 0x00001FEh 0x00001FEh 0x0000800h 0x001FEh 0x0003FE	VS = 256 IW 0x00000h 0x00001FEh 0x000200h 0x0007FEh 0x0007FEh 0x00035FEh 0x001FFEh 0x0035FE H 0x004000h 0x00400h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x004000h 0x0	VS = 256 IW 0x000000h BS = 7936 IW 0x000200h 0x000200h 0x0003800h 0x0018FEh 0x003800h 0x003800h 0x003800h 0x003800h 0x004000h 0x004000h 0x004000h 0x0046FEh 0x004000h 0x0046FEh 0x0046FEh 0x0046FEH 0x004600h 0x0046FEH 0x0046FEH 0x004600h

27.0 INSTRUCTION SET SUMMARY

Note: This of

This data sheet summarizes the features of the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the dsPIC33F Family Reference Manual, which is available from the Microchip website (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- · DSP operations
- Control operations

Table 27-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 27-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- · The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (uncondi-

tional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the "dsPIC30/33F Programmer's Reference Manual" (DS70157).

TABLE 27-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {015}
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	$Destination\ W\ register \in \{\ Wd,\ [Wd],\ [Wd++],\ [Wd],\ [++Wd],\ [Wd]\ \}$
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}

TABLE 27-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}

TABLE 27-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb, Ws, Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb, Ws, Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb, Ws, Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb, Wns, Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C, Expr	Branch if Carry	1	1 (2)	None
		BRA	GE, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N, Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ, Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB, Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV, Expr	Branch if Overflow	1	1 (2)	None
		BRA	-	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SA, Expr	Branch if Accumulator B saturated	1	1 (2)	None
			SB, Expr		1	2	None
		BRA	Expr 7 Expr	Branch Unconditionally Branch if Zero	1		None
		BRA	Z,Expr	Computed Branch	1	1 (2)	None
7	DCDM	BRA	Wn f #bi+4	Bit Set f	1	1	None
'	BSET	BSET	f,#bit4				
0	DOM	BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws, Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb> Bit Toggle f</wb>	1	1	None None
9	BTG	BTG	f,#bit4				

TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb <u>with</u> Ws, with Borrow (Wb – Ws – C)	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f - 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws – 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm, Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm, Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn, Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm, Acc, Wx, Wy, Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm, Acc, Wx, Wy, Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns, Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb, Ws, Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb, Wns, Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB	Prefetch and store accumulator	1	1	None

TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)

48					Words	Cycles	Affected
٠٠	MPY	MPY Wm*Wn,Ac	cc, Wx, Wxd, Wy, Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc, Wx, Wxd, Wy, Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ac	cc, Wx, Wxd, Wy, Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb, Ws, Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb, Ws, Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb, Ws, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb, Ws, Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
0.4		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f, WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
65	DDG	RLNC	Ws, Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f MDEC	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f, WREG	WREG = Rotate Right through Carry W	1	1	C,N,Z
		RRC	Ws,Wd f	Wd = Rotate Right through Carry Ws f = Rotate Right (No Carry) f	1	1	C,N,Z
66	DDMC			TT = BUIME BIOTH UND CALLY) (1	1	N,Z
66	RRNC	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z

TABLE 27-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc, #Slit4, Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc, Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb, Wns, Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb - lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb, Ws, Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG - f	1	1	C,DC,N,OV,Z
		SUBR	Wb, Ws, Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb, Ws, Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Vd = lit5 - Vb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb, Ws, Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

28.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers are supported with a full range of hardware and software development tools:

- · Integrated Development Environment
 - MPLAB® IDE Software
- · Assemblers/Compilers/Linkers
 - MPASMTM Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK™ Object Linker/ MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- · In-Circuit Debugger
 - MPLAB ICD 2
- · Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit™ 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

28.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows® operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

28.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

28.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

28.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

28.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

28.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

28.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

28.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

28.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming™ (ICSP™) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

28.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

28.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

28.12 PICkit 2 Development Programmer

The PICkit™ 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC™ Lite C compiler, and is designed to help get up to speed quickly using PIC® microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

28.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, Keeloq® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	0.3V to +5.6V
Voltage on VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin(3)	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 29-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGCx and PGDx pins, which are able to sink/source 12 mA.

29.1 DC Characteristics

TABLE 29-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range (in Volts)	Temp Range (in °C)	Max MIPS dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and
			dsPIC33FJ128GPX02/X04
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 29-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD \ x \ (IDD - \Sigma \ IOH)$	PD	1	Pint + Pi/c)	V
I/O Pin Power Dissipation: I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJA			W

TABLE 29-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 44-pin QFN	hetaJA	24.5	_	°C/W	1
Package Thermal Resistance, 44-pin TFQP	θ JA	45.8	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θ JA	60	_	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θ JA	80.2	_	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θ JA	29	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 29-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
Operati	ng Voltag	e						
DC10	Supply V	/oltage						
	VDD		3.0	_	3.6	V	Industrial and Extended	
DC12	VDR	RAM Data Retention Voltage ⁽²⁾	1.1	_	1.8	V		
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V		
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	_	V/ms	0-3.0V in 0.1s	
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	2.25	_	2.75	V	Voltage is dependent on load, temperature and VDD	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

^{2:} This is the limit to which VDD can be lowered without losing RAM data.

^{3:} These parameters are characterized but not tested in manufacturing.

TABLE 29-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Parameter No.	Typical ⁽¹⁾	Max	Units	Units Conditions					
Operating Cur	rent (IDD) ⁽²⁾								
DC20d	19	30	mA	-40°C					
DC20a	19	30	mA	+25°C	2.21/	10 MIPS			
DC20b	19	30	mA	+85°C	3.3V	10 MIPS			
DC20c	19	35	mA	+125°C					
DC21d	29	40	mA	-40°C					
DC21a	29	40	mA	+25°C	3.3V	16 MIPS			
DC21b	28	45	mA	+85°C	3.34	10 10111 3			
DC21c	28	45	mA	+125°C					
DC22d	33	50	mA	-40°C					
DC22a	33	50	mA	+25°C	3.3V	00 MIDO			
DC22b	33	55	mA	+85°C	3.30	20 MIPS			
DC22c	33	55	mA	+125°C					
DC23d	47	70	mA	-40°C					
DC23a	48	70	mA	+25°C	3.3V	20 MIDS			
DC23b	48	70	mA	+85°C	3.30	30 MIPS			
DC23c	48	70	mA	+125°C					
DC24d	60	90	mA	-40°C					
DC24a	60	90	mA	+25°C	3.3V	40 MIPS			
DC24b	60	90	mA	+85°C	3.3V	40 IVIIPS			
DC24c	60	90	mA	+125°C	1				

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

^{2:} The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

TABLE 29-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARACTI	ERISTICS		(unless other		s: 3.0V to 3.6V ≤ TA ≤ +85°C for Ind ≤ TA ≤ +125°C for Ex				
Parameter No.	Typical ⁽¹⁾	Max	Units	Inits Conditions					
Idle Current (III	DLE): Core OF	F Clock ON	Base Curren	t ⁽²⁾					
DC40d	4	25	mA	-40°C					
DC40a	4	25	mA	+25°C		10 MIPS			
DC40b	4	25	mA	+85°C	3.3V	10 WIFS			
DC40c	4	25	mA	+125°C					
DC41d	6	25	mA	-40°C					
DC41a	6	25	mA	+25°C	3.3V	16 MIPS			
DC41b	6	25	mA	+85°C	3.34				
DC41c	6	25	mA	+125°C	1				
DC42d	9	25	mA	-40°C					
DC42a	9	25	mA	+25°C	3.3V	00 MID0			
DC42b	9	25	mA	+85°C	3.34	20 MIPS			
DC42c	9	25	mA	+125°C					
DC43a	16	25	mA	+25°C					
DC43d	16	25	mA	-40°C	3.3V	30 MIPS			
DC43b	16	25	mA	+85°C	3.34	30 WIPS			
DC43c	16	25	mA	+125°C					
DC44d	18	25	mA	-40°C					
DC44a	18	25	mA	+25°C	3.3V	40 MIPS			
DC44b	19	25	mA	+85°C	3.34	40 IVIIPS			
DC44c	19	25	mA	+125°C					

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

^{2:} Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 29-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	erwise state	-40°C ≤ TA ≤	/ to 3.6V <pre> +85°C for Industrial +125°C for Extended</pre>	
Parameter No.	Typical ⁽¹⁾	Max	Units		(Conditions	
Power-Down (Current (IPD)	2)					
DC60d	24	500	μΑ	-40°C			
DC60a	28	500	μΑ	+25°C	3.3V	Base Power-Down Current ^(3,4)	
DC60b	124	500	μΑ	+85°C	3.34	Base Fower-Down Current	
DC60c	350	500	μΑ	+125°C			
DC61d	8	13	μΑ	-40°C			
DC61a	10	15	μΑ	+25°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾	
DC61b	12	20	μΑ	+85°C	3.30	Watchdog Timer Current. Alwarts	
DC61c	13	25	μΑ	+125°C			

- **Note 1:** Data in the Typical column is at 3.3V, 25°C unless otherwise stated.
 - **2:** Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off.
 - 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
 - **4:** These currents are measured on the device containing the most memory in this family.

TABLE 29-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Parameter No.	Typical ⁽¹⁾	Doze Ratio	Units		Conditions		
DC73a	42	50	1:2	mA			
DC73f	23	30	1:64	mA	-40°C	3.3V	40 MIPS
DC73g	23	30	1:128	mA			
DC70a	42	50	1:2	mA			40 MIPS
DC70f	26	30	1:64	mA	+25°C	3.3V	
DC70g	25	30	1:128	mA			
DC71a	41	50	1:2	mA			
DC71f	25	30	1:64	mA	+85°C	3.3V	40 MIPS
DC71g	24	30	1:128	mA			
DC72a	42	50	1:2	mA			40 MIPS
DC72f	26	30	1:64	mA	+125°C	3.3V	
DC72g	25	30	1:128	mA			

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{Ta} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{Ta} \leq +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units				Conditions	
	VIL	Input Low Voltage						
DI10		I/O pins	Vss		0.2 VDD	V		
DI11		PMP pins	Vss	_	0.15 VDD	V	PMPTTL = 1	
DI15		MCLR	Vss	_	0.2 VDD	V		
DI16		OSC1 (XT mode)	Vss	_	0.2 VDD	V		
DI17		OSC1 (HS mode)	Vss	_	0.2 VDD	V		
DI18		SDAx, SCLx	Vss		0.3 VDD	V	SMbus disabled	
DI19		SDAx, SCLx	Vss		0.2 VDD	V	SMbus enabled	
	VIH	Input High Voltage						
DI20		I/O pins with analog functions ⁽⁴⁾ digital-only ⁽⁴⁾	0.8 Vdd 0.8 Vdd	_	VDD 5.5	V V		
DI21		PMP pins:					PMPTTL = 1	
		with analog functions ⁽⁴⁾	0.24 VDD + 0.8	_	VDD	V		
		digital-only ⁽⁴⁾	0.24 VDD + 0.8	-	5.5	V		
DI25		MCLR	0.8 VDD		VDD	V		
DI26		OSC1 (XT mode)	0.7 VDD	-	VDD	V		
DI27		OSC1 (HS mode)	0.7 Vdd	_	VDD	V		
DI28		SDAx, SCLx	0.7 VDD		VDD	V	SMbus disabled	
DI29		SDAx, SCLx	0.8 VDD	_	VDD	V	SMbus enabled	
	ICNPU	CNx Pull-up Current						
DI30		"T. "" a clument is at 2 21/ 25%	50	250	400	μΑ	VDD = 3.3V, VPIN = VSS	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 3: Negative current is defined as current sourced by the pin.
- **4:** See Table 10-1 for a list of digital-only and analog pins.

^{2:} The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Units	Conditions		
	liL	Input Leakage Current ⁽²⁾⁽³⁾						
DI50		I/O ports	_	_	±2	μА	$Vss \leq VPIN \leq VDD, \\ Pin at high-impedance$	
DI51		Analog Input Pins	_	_	±1	μА	$Vss \leq VPIN \leq VDD, \ Pin \ at high-impedance, \\ 40^{\circ}C \leq TA \leq +85^{\circ}C$	
DI51a		Analog Input Pins	_	_	±2	μА	Analog pins shared with external reference pins, $40^{\circ}C \leq TA \leq +85^{\circ}C$	
DI51b		Analog Input Pins	_	_	±3.5	μА	$Vss \leq VPIN \leq VDD, Pin at \\ high-impedance, \\ -40°C \leq TA \leq +125°C$	
DI51c		Analog Input Pins	_	_	±8	μА	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$	
DI55		MCLR	_	_	±2	μА	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	_		±2	μА	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and HS modes} \end{array}$	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 3: Negative current is defined as current sourced by the pin.
- 4: See Table 10-1 for a list of digital-only and analog pins.

^{2:} The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

TABLE 29-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions					
	Vol	Output Low Voltage						
DO10		I/O ports	_	_	0.4	V	IOL = 2 mA, VDD = 3.3V	
DO16		OSC2/CLKO	_	_	0.4	V	IOL = 2 mA, VDD = 3.3V	
	Vон	Output High Voltage						
DO20		I/O ports	2.40	_	_	V	IOH = -2.3 mA, VDD = 3.3V	
DO26		OSC2/CLKO	2.41	_	_	V	IOH = -1.3 mA, VDD = 3.3V	

TABLE 29-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
Param No.	Symbol	Character	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Units	Conditions	
BO10	VBOR	BOR Event on VDD transition high-to-low BOR event is tied to VDD core voltage decrease		2.40	_	2.55	V	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 29-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	DC CHARACTERISTICS			-	ise state	d) -40°C :	ss: 3.0V to 3.6V ≤ Ta ≤ +85°C for Industrial ≤ Ta ≤ +125°C for Extended		
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units				Conditions		
		Program Flash Memory							
D130a	Ep	Cell Endurance	10,000	_	_	E/W	-40°C to +125°C		
D131	VPR	VDD for Read	VMIN	_	3.6	V	Vмін = Minimum operating voltage		
D132B	VPEW	VDD for Self-Timed Write	VMIN	_	3.6	V	VміN = Minimum operating voltage		
D134	TRETD	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	_	10	_	mA			
D136	TRW	Row Write Time	1.6	_	_	ms			
D137	TPE	Page Erase Time	20	_	_	ms			
D138	Tww	Word Write Cycle Time	20	_	40	μS			

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

TABLE 29-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated): Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended									
Param No.	Symbol Characteristics Min Lyn Max Units Comments									
	CEFC	External Filter Capacitor Value	1	10	_	μF	Capacitor must be low series resistance (< 5 Ohms)			

29.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04

AC characteristics and timing parameters.

TABLE 29-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
	Operating voltage VDD range as described in Section 29.0 "Electrical Characteristics" .						

FIGURE 29-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

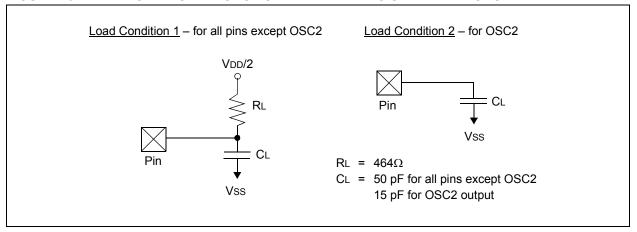
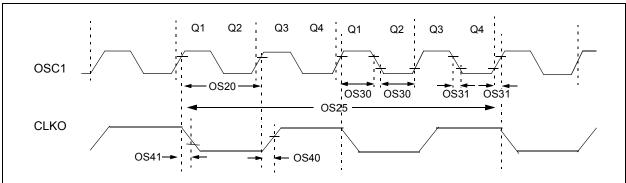



TABLE 29-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin	_	_	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	_	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

FIGURE 29-2: EXTERNAL CLOCK TIMING

TABLE 29-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended						
Param No.	Symb	Characteristic	Min Typ ⁽¹⁾ Max Units Conditi							
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC			
		Oscillator Crystal Frequency	3.5 10		10 40 33	MHz MHz kHz	XT HS SOSC			
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns				
OS25	TCY	Instruction Cycle Time ⁽²⁾	25	_	DC	ns				
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_		20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾	_	5.2	_	ns				
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2	_	ns				

- **Note 1:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
 - 2: Instruction cycle period (TcY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
 - 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

TABLE 29-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

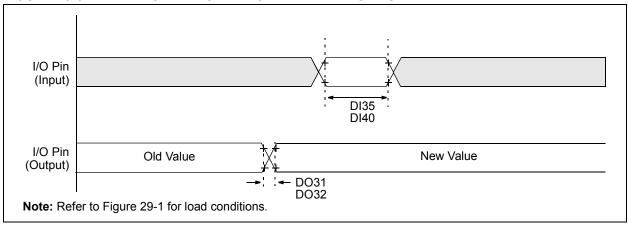
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \text{ for Extended} $					
Param No.	Symbol	Characteris	tic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	FPLLI	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8	_	8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency	m	100	_	200	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter)		-3	0.5	3	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $ -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C for Industrial} \\ -40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C for Extended} $							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	Internal FRC Accuracy @	7.3728	MHz ^(1,2)						
F20	FRC	-2	_	+2	%	$-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$	VDD = 3.0-3.6V		
	FRC	-5	_	+5	%	-40°C ≤ TA ≤ +125°C			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.


TABLE 29-19: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	LPRC @ 32.768 kHz ⁽¹⁾								
F21	LPRC	-20	±6	+20	%	-40°C ≤ TA ≤ +85°C	VDD = 3.0-3.6V		
	LPRC	-70		+70	%	$-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ VDD = 3.0-3.6V			

Note 1: Change of LPRC frequency as VDD changes.

^{2:} FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

FIGURE 29-3: CLKO AND I/O TIMING CHARACTERISTICS

TABLE 29-20: I/O TIMING REQUIREMENTS

AC CHAR	ACTERISTI	cs	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions		
DO31	TioR	Port Output Rise Tim	е	_	10	25	ns	_	
DO32	TioF	Port Output Fall Time		_	10	25	ns	_	
DI35	TINP	INTx Pin High or Low Time (output)		20	_		ns	_	
DI40	TRBP	CNx High or Low Tim	ne (input)	2	_	_	Tcy	_	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

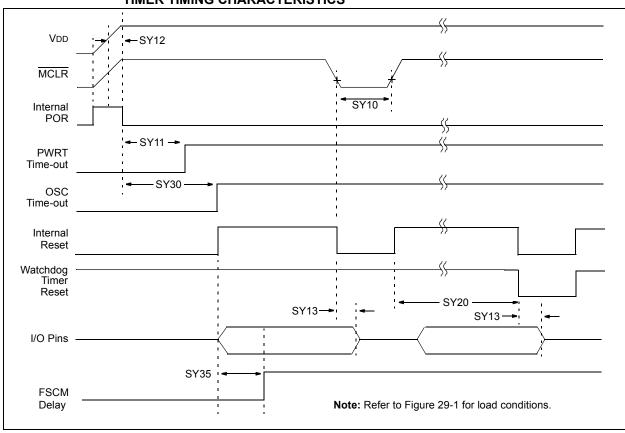


TABLE 29-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions							
SY10	TMCL	MCLR Pulse Width (low)	2	_	_	μS	-40°C to +85°C			
SY11	TPWRT	Power-up Timer Period	_	2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable			
SY12	TPOR	Power-on Reset Delay	3	10	30	μS	-40°C to +85°C			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS				
SY20	TWDT1	Watchdog Timer Time-out Period (No Prescaler)	1.7	2.1	2.6	ms	VDD = 3V, -40°C to +85°C			
SY30	Tost	Oscillator Start-up Timer Period	_	1024 Tosc	_	_	Tosc = OSC1 period			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C			

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 29-5: TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS

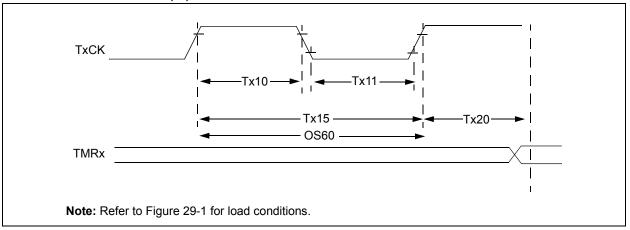


TABLE 29-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature -40°C ≤ TA ≤ +85°C for Industrial
	-40°C ≤ TA ≤ +125°C for Extended

					-40	C S IA S	+123 C	IOI Exterided
Param No.	Symbol	Charact	eristic	Min	Тур	Max	Units	Conditions
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler	0.5 Tcy + 20	_	_	ns	Must also meet parameter TA15
			Synchronous, with prescaler	10	1	_	ns	
			Asynchronous	10	_	_	ns	
TA11	TTXL	TxCK Low Time	Synchronous, no prescaler	0.5 Tcy + 20	_	_	ns	Must also meet parameter TA15
			Synchronous, with prescaler	10	-	_	ns	
			Asynchronous	10	_	_	ns	
TA15	ТтхР	TxCK Input Period	Synchronous, no prescaler	Tcy + 40	_	_	ns	
			Synchronous, with prescaler	Greater of: 20 ns or (Tcy + 40)/N	_	_	_	N = prescale value (1, 8, 64, 256)
			Asynchronous	20	_	_	ns	
OS60	Ft1	SOSC1/T1CK Osci frequency Range (c by setting bit TCS (scillator enabled	DC	_	50	kHz	
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		0.5 TcY		1.5 TcY	_	

Note 1: Timer1 is a Type A.

TABLE 29-23: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No. Characteristic			eristic		Min	Тур	Max	Units	Conditions
TB10	TtxH	TxCK High Time	Synchro no preso	,	0.5 Tcy + 20	_	1	ns	Must also meet parameter TB15
			Synchronous, with prescaler		10	_	_	ns	
TB11	TtxL	TxCK Low Time	Synchro no preso		0.5 Tcy + 20	_	_	ns	Must also meet parameter TB15

10

Tcy + 40

Greater of:

20 ns or (Tcy + 40)/N

0.5 TcY

ns

ns

1.5 TCY

N = prescale

(1, 8, 64, 256)

value

TABLE 29-24: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS

Synchronous,

with prescaler

Synchronous,

Synchronous,

with prescaler

Delay from External TxCK Clock

Edge to Timer Increment

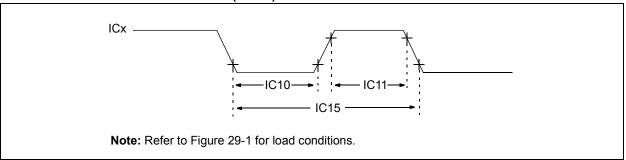
no prescaler

TxCK Input

Period

TB15

TB20


TtxP

TCKEXT-

MRL

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended					
Param No. Symbol Characteristic					Min	Тур	Max	Units	Conditions
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 Tcy + 20	_	_	ns	Must also meet parameter TC15
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 Tcy + 20	_	_	ns	Must also meet parameter TC15
TC15	TtxP	TxCK Input Period	Synchron no preso		Tcy + 40	_	_	ns	N = prescale value
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 Tcy	_	1.5 Tcy	_	

FIGURE 29-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 29-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	(unless otherwis	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Max	Units	Conditions			
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	_	ns				
			With Prescaler	10	_	ns				
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns				
			With Prescaler	10	_	ns				
IC15	TccP	ICx Input Period	out Period $(Tcy + 40)/N$ — ns $N = pres$ value (1,							
Note 4.	Those n	arameters are shares	tarizad but not toota	d in manufacturin	~					

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 29-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

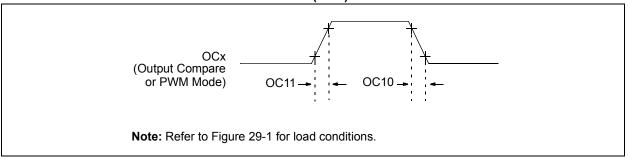


TABLE 29-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	yp Max Units Condition						
OC10	TccF	OCx Output Fall Time	— — ns See parameter D032								
OC11	TccR	OCx Output Rise Time	ns See parameter D031								

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 29-8: OC/PWM MODULE TIMING CHARACTERISTICS

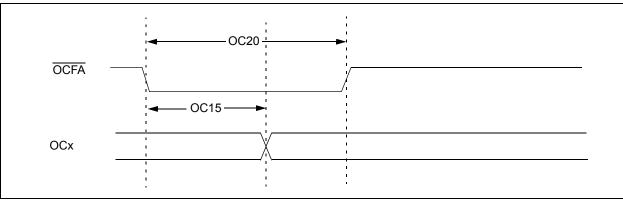


TABLE 29-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions							
OC15	TFD	Fault Input to PWM I/O Change	_	_	50	ns				
OC20	TFLT	Fault Input Pulse Width	50	_	_	ns	_			

Note 1: These parameters are characterized but not tested in manufacturing.

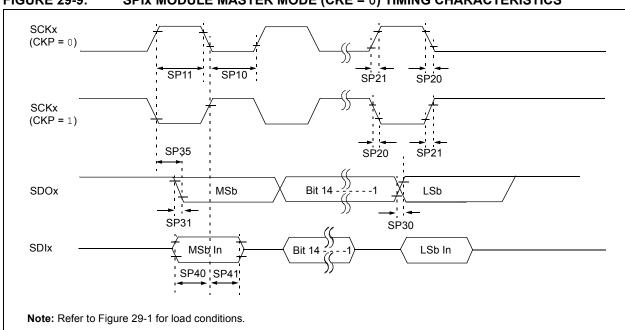


FIGURE 29-9: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 29-28: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) $ \begin{array}{ll} \text{Operating temperature} & -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C for Industrial} \\ & -40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C for Extended} \\ \end{array} $						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions			
SP10	TscL	SCKx Output Low Time	Tcy/2	_		ns	See Note 3			
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	See Note 3			
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See parameter D032 and Note 4			
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See parameter D031 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See parameter D032 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See parameter D031 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	_	_	ns	_			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_			

- Note 1: These parameters are characterized but not tested in manufacturing.
 - **2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
 - 3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
 - 4: Assumes 50 pF load on all SPIx pins.

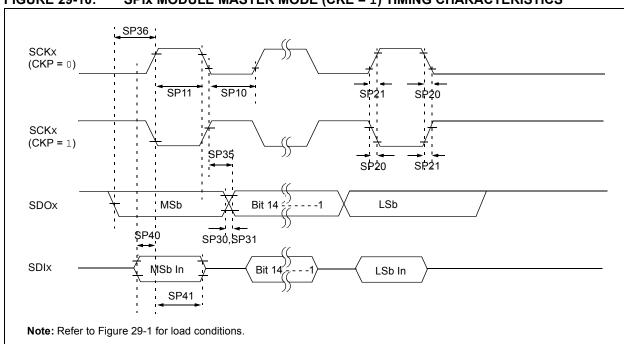


FIGURE 29-10: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 29-29: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions			
SP10	TscL	SCKx Output Low Time(3)	Tcy/2	_	_	ns	See Note 3			
SP11	TscH	SCKx Output High Time ⁽³⁾	Tcy/2	_	_	ns	See Note 3			
SP20	TscF	SCKx Output Fall Time ⁽⁴⁾	_	_	_	ns	See parameter D032 and Note 4			
SP21	TscR	SCKx Output Rise Time ⁽⁴⁾	_	_	_	ns	See parameter D031 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time ⁽⁴⁾	_	_	_	ns	See parameter D032 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time ⁽⁴⁾	_	_	_	ns	See parameter D031 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	1	ns	_			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	_	_	ns	_			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	_			

Note 1: These parameters are characterized but not tested in manufacturing.

- **2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

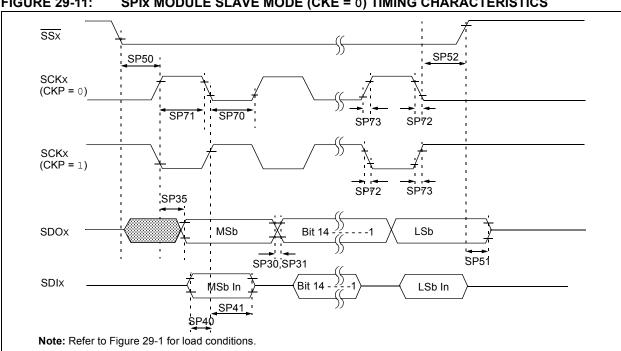


FIGURE 29-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 29-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30	_	1	ns	_		
SP71	TscH	SCKx Input High Time	30	_	_	ns	_		
SP72	TscF	SCKx Input Fall Time ⁽³⁾		10	25	ns	See Note 3		
SP73	TscR	SCKx Input Rise Time ⁽³⁾		10	25	ns	See Note 3		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	_	-	ns	See parameter D032 and Note 3		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	_	-	ns	See parameter D031 and Note 3		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		_	30	ns	_		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	1	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	1	ns	_		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow \text{ to SCKx} \uparrow \text{ or SCKx Input}$	120	_	_	ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns	See Note 3		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy +40	_	_	ns	_		

- Note 1: These parameters are characterized but not tested in manufacturing.
 - 2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
 - Assumes 50 pF load on all SPIx pins.

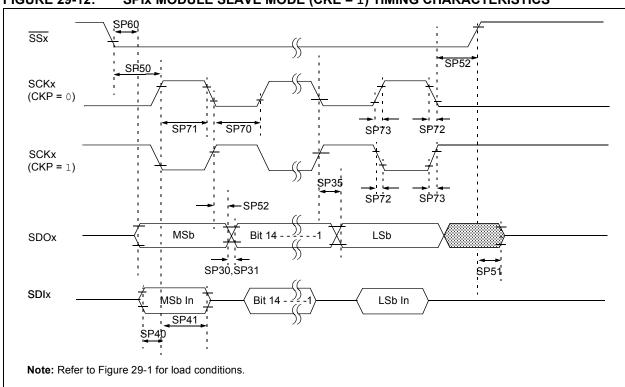


FIGURE 29-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 29-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHA	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾ Max Units					
SP70	TscL	SCKx Input Low Time	30	_	_	ns	_		
SP71	TscH	SCKx Input High Time	30			ns	_		
SP72	TscF	SCKx Input Fall Time ⁽³⁾		10	25	ns	See Note 3		
SP73	TscR	SCKx Input Rise Time ⁽³⁾	_	10	25	ns	See Note 3		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾			1	ns	See parameter D032 and Note 3		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	-		ns	See parameter D031 and Note 3		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_		30	ns	_		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	-		ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	-		ns	_		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120			ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

^{3:} The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

^{4:} Assumes 50 pF load on all SPIx pins.

FIGURE 29-13: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

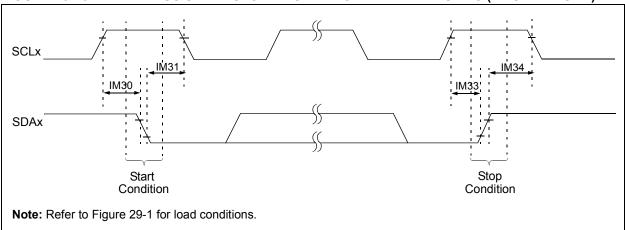


FIGURE 29-14: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

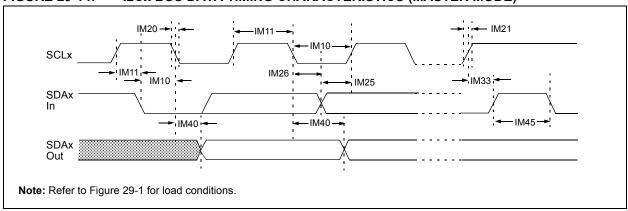


TABLE 29-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHA	ARACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	_		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	_		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	_		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	_		
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	_		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	_		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 CB	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 CB	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns			
IM25	Tsu:dat	Data Input	100 kHz mode	250	_	ns	_		
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode ⁽²⁾	40	_	ns			
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	_		
		Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽²⁾	0.2	_	μS			
IM30	Tsu:sta	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	condition		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period the		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS			
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	_		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns			
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	_		
		From Clock	400 kHz mode	_	1000	ns	_		
			1 MHz mode ⁽²⁾	_	400	ns	_		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be		
			400 kHz mode	1.3		μS	free before a new		
			1 MHz mode ⁽²⁾	0.5	_	μS	transmission can start		
IM50	Св	Bus Capacitive L	oading	_	400	pF	4 10 14 420 7000		

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to **Section 19. "Inter-Integrated Circuit (I²C™)"** in the "dsPIC33F Family Reference Manual". Please see the Microchip website (www.microchip.com) for the latest dsPIC33F Family Reference Manual chapters.

^{2:} Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 29-15: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

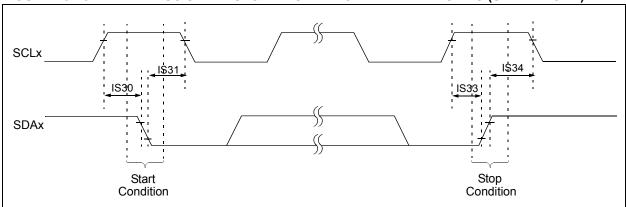


FIGURE 29-16: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)

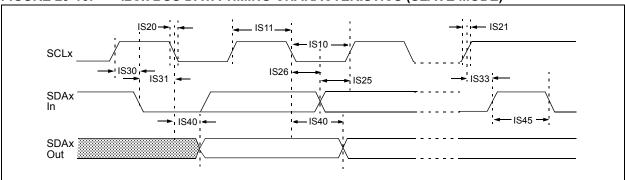


TABLE 29-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	RACTER	STICS		Standard Operating tem	rwise sta	ated) e -40°0	ons: 3.0V to 3.6V $C \le TA \le +85^{\circ}C$ for Industrial $C \le TA \le +125^{\circ}C$ for Extended
Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	_
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz
			1 MHz mode ⁽¹⁾	0.5		μS	_
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns	_
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽¹⁾	100		ns	
IS26	THD:DAT	Data Input	100 kHz mode	0		μS	_
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽¹⁾	0	0.3	μS	
IS30	Tsu:sta	Start Condition	100 kHz mode	4.7		μS	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6		μS	Start condition
			1 MHz mode ⁽¹⁾	0.25		μS	
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μS	After this period, the first
		Hold Time	400 kHz mode	0.6		μS	clock pulse is generated
			1 MHz mode ⁽¹⁾	0.25		μS	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μS	_
		Setup Time	400 kHz mode	0.6		μS	
			1 MHz mode ⁽¹⁾	0.6		μS	
IS34	THD:ST	Stop Condition	100 kHz mode	4000		ns	_
	0	Hold Time	400 kHz mode	600		ns	
			1 MHz mode ⁽¹⁾	250		ns	
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	_
		From Clock	400 kHz mode	0	1000	ns	
			1 MHz mode ⁽¹⁾	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
			1 MHz mode ⁽¹⁾	0.5	_	μS	can start
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	_

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

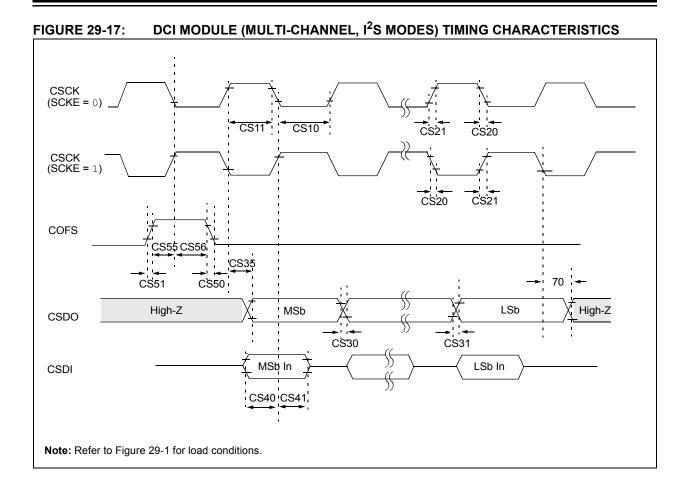


TABLE 29-34: DCI MODULE (MULTI-CHANNEL, I²S MODES) TIMING REQUIREMENTS

AC CHA	ARACTERIS	STICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions		
CS10	TCSCKL	CSCK Input Low Time (CSCK pin is an input)	Tcy/2 + 20	_	_	ns	1		
		CSCK Output Low Time ⁽³⁾ (CSCK pin is an output)	30	_	_	ns			
CS11	Тсѕскн	CSCK Input High Time (CSCK pin is an input)	Tcy/2 + 20	_	_	ns	_		
		CSCK Output High Time ⁽³⁾ (CSCK pin is an output)	30	_	_	ns	_		
CS20	TCSCKF	CSCK Output Fall Time ⁽⁴⁾ (CSCK pin is an output)	_	10	25	ns	_		
CS21	TCSCKR	CSCK Output Rise Time ⁽⁴⁾ (CSCK pin is an output)	ı	10	25	ns	1		
CS30	TCSDOF	CSDO Data Output Fall Time(4)	1	10	25	ns			
CS31	TCSDOR	CSDO Data Output Rise Time ⁽⁴⁾	_	10	25	ns	_		
CS35	TDV	Clock Edge to CSDO Data Valid	_	_	10	ns	_		
CS36	TDIV	Clock Edge to CSDO Tri-Stated	10	_	20	ns	_		
CS40	TCSDI	Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	_	_	ns	I		
CS41	THCSDI	Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	_	_	ns	I		
CS50	TCOFSF	COFS Fall Time (COFS pin is output)	ı	10	25	ns	Note 1		
CS51	TCOFSR	COFS Rise Time (COFS pin is output)	_	10	25	ns	Note 1		
CS55	Tscofs	Setup Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	_		ns	_		
CS56	THCOFS	Hold Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	_	_	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

- **2:** Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all DCI pins.

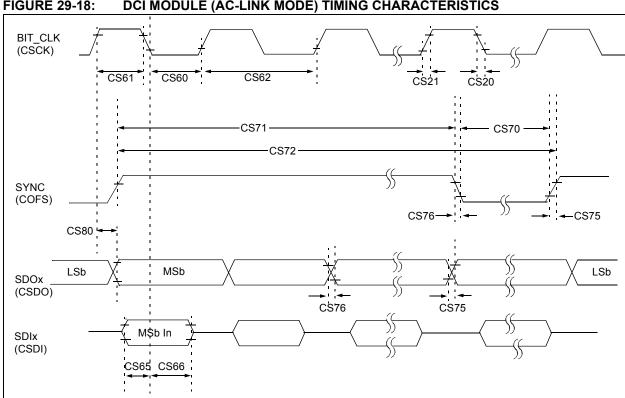


TABLE 29-35: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic ^(1,2)	Min	Typ ⁽³⁾	Max	Units	Conditions	
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	_	
CS61	Твськн	BIT_CLK High Time	36	40.7	45	ns	_	
CS62	TBCLK	BIT_CLK Period	_	81.4	_	ns	Bit clock is input	
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	_	_	10	ns	_	
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	_	_	10	ns	_	
CS70	TSYNCLO	SYNC Data Output Low Time	_	19.5		μS	Note 1	
CS71	Tsynchi	SYNC Data Output High Time	_	1.3	_	μS	Note 1	
CS72	TSYNC	SYNC Data Output Period	_	20.8		μS	Note 1	
CS75	TRACL	Rise Time, SYNC, SDATA_OUT	_		30	ns	CLOAD = 50 pF, VDD = 3V	
CS76	TFACL	Fall Time, SYNC, SDATA_OUT	_	_	30	ns	CLOAD = 50 pF, VDD = 3V	
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	_	_	15	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} These values assume BIT_CLK frequency is 12.288 MHz.

^{3:} Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-19: ECAN MODULE I/O TIMING CHARACTERISTICS

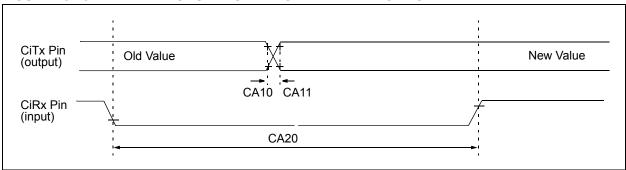


TABLE 29-36: ECAN MODULE I/O TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units				Conditions
CA10	TioF	Port Output Fall Time	_	_	_	ns	See parameter D032
CA11	TioR	Port Output Rise Time	_	_	_	ns	See parameter D031
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120			ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-37: ADC MODULE SPECIFICATIONS

AC CHA	ARACTER	RISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended									
Param No.	Symbol	Characteristic	Min.	Тур	p Max. Unit		Conditions					
Device Supply												
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0	_	Lesser of VDD + 0.3 or 3.6	V	_					
AD02	AVss	Module Vss Supply	Vss - 0.3	I	Vss + 0.3	>	_					
			Reference	Inputs								
AD05	VREFH	Reference Voltage High	AVss + 2.7	_	AVDD	V	See Note 1					
AD05a			3.0	_	3.6	V	VREFH = AVDD VREFL = AVSS = 0					
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 2.7	V	See Note 1					
AD06a			0	_	0	V	VREFH = AVDD VREFL = AVSS = 0					
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	V	VREF = VREFH - VREFL					
AD08	IREF	Current Drain	_	400 —	550 10	μ Α μ Α	ADC operating ADC off					
			Analog I	nput								
AD12	VINH	Input Voltage Range VINH	VINL	_	VREFH	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input					
AD13	VINL	Input Voltage Range VINL	VREFL	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input					
AD17	RIN	Recommended Impedance of Analog Voltage Source		_	200 200	Ω Ω	10-bit ADC 12-bit ADC					

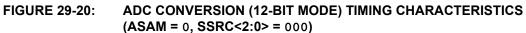

Note 1: These parameters are not characterized or tested in manufacturing.

TABLE 29-38: ADC MODULE SPECIFICATIONS (12-BIT MODE)

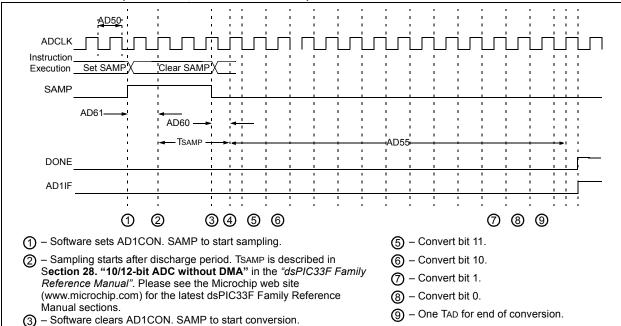

AC CHA	TICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min. Typ Max.		Units	Conditions	
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20a	Nr	Resolution	1:	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	GERR	Gain Error	1.25	1.5	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	_	Monotonicity	_	_	_	_	Guaranteed
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with i	nternal '	VREF+/VREF-
AD20a	Nr	Resolution	1:	2 data bi	ts	bits	
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23a	GERR	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	Eoff	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25a	_	Monotonicity	_	_	_	_	Guaranteed
		Dynamic	Performa	nce (12	-bit Mod	e)	
AD30a	THD	Total Harmonic Distortion	-77	-69	-61	dB	_
AD31a	SINAD	Signal to Noise and Distortion	59	63	64	dB	_
AD32a	SFDR	Spurious Free Dynamic Range	63	72	74	dB	_
AD33a	FNYQ	Input Signal Bandwidth	_	_	250	kHz	_
AD34a	ENOB	Effective Number of Bits	10.95	11.1	_	bits	_

TABLE 29-39: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHA	RACTERIS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min. Typ Max.			Units	Conditions
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20b	Nr	Resolution	1	0 data b	its	bits	
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23b	GERR	Gain Error	1	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24b	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25b	_	Monotonicity	_	_	_	_	Guaranteed
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ıts with i	nternal \	VREF+/VREF-
AD20b	Nr	Resolution	1	0 data bi	its	bits	
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23b	GERR	Gain Error	1	5	6	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	Eoff	Offset Error	1	2	3	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25b	_	Monotonicity	_	_	_	_	Guaranteed
		Dynamic	Performa	nce (10	-bit Mod	e)	
AD30b	THD	Total Harmonic Distortion	_	-64	-67	dB	_
AD31b	SINAD	Signal to Noise and Distortion		57	58	dB	_
AD32b	SFDR	Spurious Free Dynamic Range	_	60	62	dB	_
AD33b	FNYQ	Input Signal Bandwidth	_	_	550	kHz	_
AD34b	ENOB	Effective Number of Bits	9.1	9.7	9.8	bits	_

(4) - Sampling ends, conversion sequence starts.

TABLE 29-40: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min.	Typ ⁽²⁾	Max.	Units	Conditions	
		Clock	Paramete	ers ⁽¹⁾				
AD50	TAD	ADC Clock Period	117.6	_	_	ns		
AD51	trc	ADC Internal RC Oscillator Period	_	250	_	ns		
	•	Con	version R	ate				
AD55	tconv	Conversion Time	_	14 TAD		ns		
AD56	FCNV	Throughput Rate	_	_	500	Ksps		
AD57	TSAMP	Sample Time	3 TAD	_	_	_		
		Timir	ng Parame	eters				
AD60	tpcs	Conversion Start from Sample Trigger ⁽²⁾	2 TAD	_	3 TAD	_	Auto convert trigger not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 TAD	_	3 TAD	_	_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 TAD	_	_	_	
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	_	_	20	μS	_	

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

^{2:} These parameters are characterized but not tested in manufacturing.

^{3:} The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

FIGURE 29-21: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)

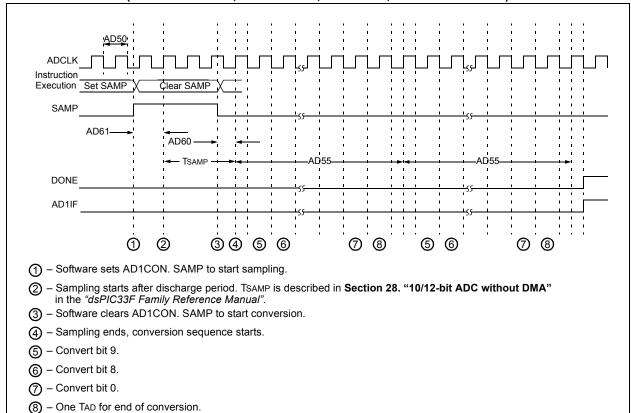


FIGURE 29-22: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

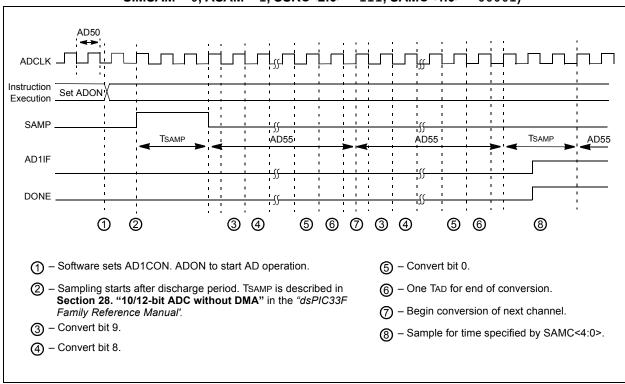


TABLE 29-41: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CHARACTERISTICS Param No. Symbol Characteristic								
		Cloc	k Parame	ters				
AD50	TAD	ADC Clock Period	76	_	_	ns		
AD51	trc	ADC Internal RC Oscillator Period		250	_	ns		
		Con	version F	Rate				
AD55	tconv	Conversion Time	_	12 TAD	_	_		
AD56	FCNV	Throughput Rate	_	_	1.1	Msps		
AD57	TSAMP	Sample Time	2 TAD	_	_	_		
		Timin	g Param	eters				
AD60	tpcs	Conversion Start from Sample Trigger ⁽¹⁾	2 TAD	_	3 TAD	_	Auto-Convert Trigger not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 TAD		3 TAD		_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	_	0.5 TAD	_	_	_	
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	_	_	20	μS	_	

- Note 1: These parameters are characterized but not tested in manufacturing.
 - **2:** Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
 - **3:** The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

TABLE 29-42: AUDIO DAC MODULE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
		Cloc	k Parame	ters				
	VOMAX	Output maximum voltage	2.65	_	_	V		
	VOMIN	Output minimum voltage	_	_	0.65	V		
	VRES	Resolution		16-bits				
		Gain Error	_	-2%	_	_		
		Offset Error			<u>+</u> 30	mV	Dependent on voltage reference stability	
		Differential Non-Linearity (DNL)		<u>+</u> 0.1		LSB	Relative to 14-bit accuracy	
		Integral Non-Linearity (INL)		<u>+</u> 0.2		LSB	Relative to 14-bit accuracy	

TABLE 29-43: AUDIO DAC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions					
			Clock Parameters					
		Clock frequency		_	25.6	MHz	Clock	
		Sample Rate	0	_	100	kHz		
		Input data frequency	0	_	45	kHz	Sampling frequency = 100 kHz	
		Initialization period	1024			Clks	Time before first sample	
		Signal to Noise Ratio		90		dB	Sampling frequency = 96 kHz	
		Signal to Noise Ratio and Distortion Ratio	82	_	_	dB	Sampling frequency = 96 kHz	

TABLE 29-44: COMPARATOR TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
300	TRESP	Response Time ^(1,2)	_	150	400	ns			
301	Тмс2оv	Comparator Mode Change to Output Valid ⁽¹⁾	_	_	10	μS			

Note 1: Parameters are characterized but not tested.

^{2:} Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 29-45: COMPARATOR MODULE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditi					
D300	VIOFF	Input Offset Voltage ⁽¹⁾		±10	_	mV		
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0	_	AVDD-1.5V	V		
D302	CMRR	Common Mode Rejection Ratio (1)	-54	_	_	dB		

Note 1: Parameters are characterized but not tested.

TABLE 29-46: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
VR310	TSET	Settling Time ⁽¹⁾	_		10	μS	

Note 1: Setting time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 29-47: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

DC CHAPACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур Мах.		Units	Conditions	
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb		
VRD311	CVRAA	Absolute Accuracy	_	_	0.5	LSb		
VRD312	CVRur	Unit Resistor Value (R)	_	2k	_	Ω		

RD

WR

PMD<7:0>

PS3

PS2

PS2

FIGURE 29-23: PARALLEL SLAVE PORT TIMING DIAGRAM

TABLE 29-48: SETTING TIME SPECIFICATIONS

AC CHAPACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
PS1	TdtV2wrH	Data in Valid before WR or CS Inactive (setup time)	20	_	_	ns	
PS2	TwrH2dtl	WR or CS Inactive to Data-In Invalid (hold time)	20	_	_	ns	
PS3	TrdL2dtV	RD and CS to Active Data-Out Valid	_	_	80	ns	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	10	_	30	ns	

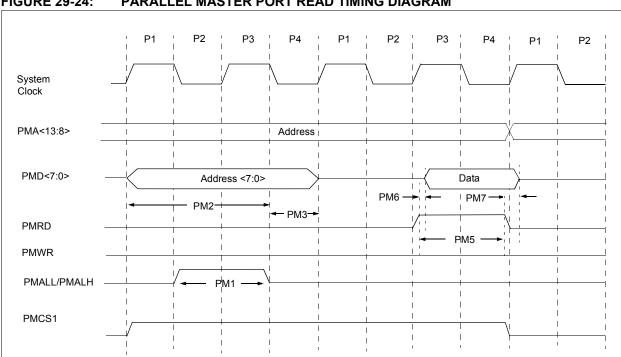


FIGURE 29-24: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 29-49: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Inc. $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Ex					
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions	
PM1	PMALL/PMALH Pulse Width	_	0.5 Tcy	_	ns		
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	_	0.75 Tcy	_	ns		
РМ3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	0.25 Tcy	_	ns		
PM5	PMRD Pulse Width	_	0.5 Tcy	_	ns		
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	_	_	_	ns		
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	_	_	_	ns		

Preliminary © 2008 Microchip Technology Inc. DS70292B-page 353

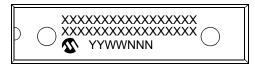

FIGURE 29-25: PARALLEL MASTER PORT WRITE TIMING DIAGRAM P2 P1 P4 P2 P3 P1 P3 P4 P1 P2 System Clock PMA<13:8> Address Address <7:0> Data PMD<7:0> -PM12-PM13 **PMRD PMWR** PM11 PMALL/PMALH PM16 PMCS1

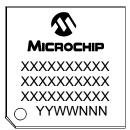
TABLE 29-50: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHADACTEDISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industria $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extende					
Param No.	Characteristic	Min.	Тур	Max.	Units	Conditions	
PM11	PMWR Pulse Width	_	0.5 Tcy	_	ns		
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	_	_	_	ns		
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	_	_	_	ns		
PM16	PMCSx Pulse Width	Tcy - 5	_	_	ns		

30.0 PACKAGING INFORMATION

28-Lead SPDIP

28-Lead SOIC (.300")


28-Lead QFN-S

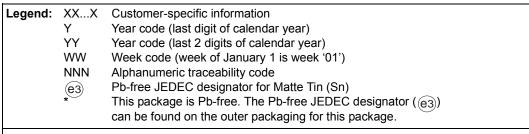
44-Lead QFN

44-Lead TQFP

Example

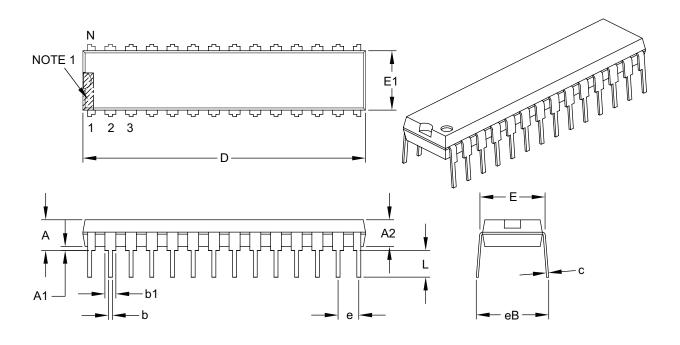
Example

Example



Example

Example



Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.

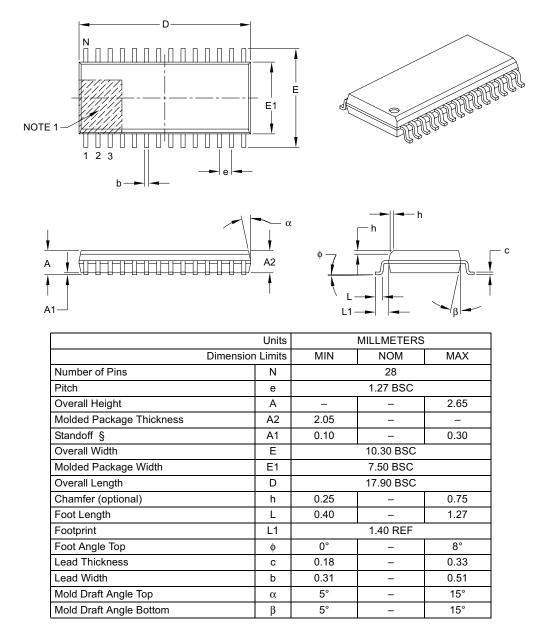
30.1 **Package Details**

28-Lead Skinny Plastic Dual In-Line (SP) - 300 mil Body [SPDIP]

For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			
D	imension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		.100 BSC	
Top to Seating Plane	Α	_	_	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	_	_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

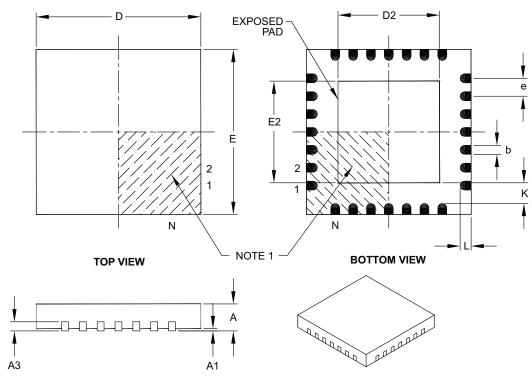
Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

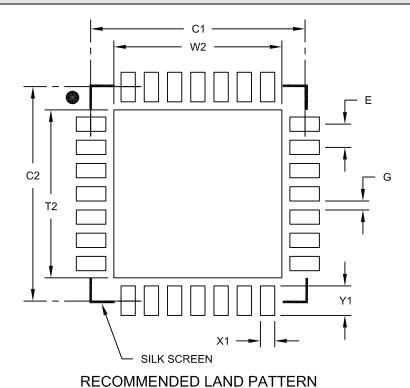
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	А3	0.20 REF			
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70	
Contact Width	b	0.23	0.38	0.43	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	_	_	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B

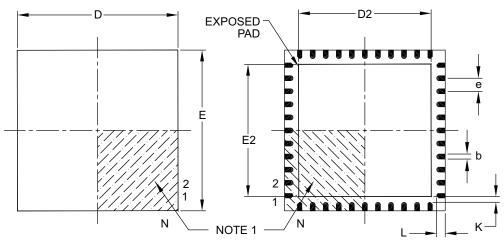
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units **MILLIMETERS** Dimension Limits MIN MOM MAX Contact Pitch Ε 0.65 BSC Optional Center Pad Width W2 4.70 Optional Center Pad Length T2 4.70 Contact Pad Spacing C1 6.00 Contact Pad Spacing C2 6.00 Contact Pad Width (X28) X1 0.40 0.85 Contact Pad Length (X28) Υ1 Distance Between Pads G 0.25

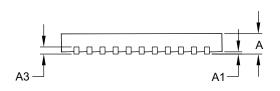
Notes:

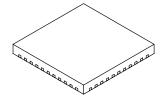
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 359

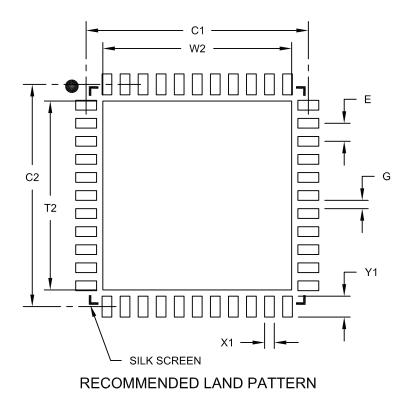

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]


For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	_	_

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units **MILLIMETERS Dimension Limits** MIN MOM MAX Contact Pitch 0.65 BSC Е Optional Center Pad Width W2 6.80 Optional Center Pad Length 6.80 T2 Contact Pad Spacing 8.00 C1 Contact Pad Spacing C2 8.00 Contact Pad Width (X44) X1 0.35 Contact Pad Length (X44) Y1 0.80

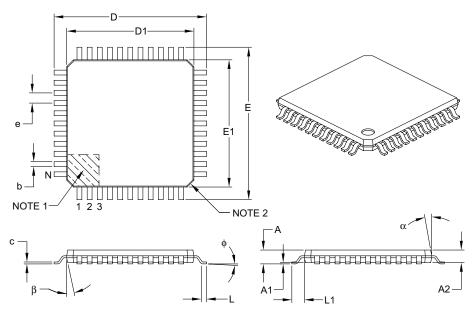
G

0.25

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

Distance Between Pads


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

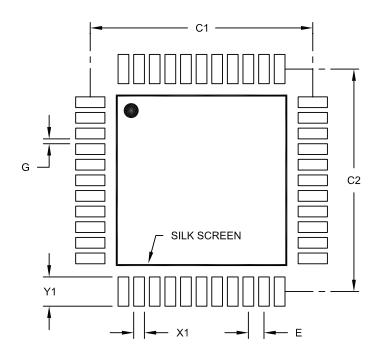
Microchip Technology Drawing No. C04-2103A

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 361

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
D	imension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	_	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIM	ETERS	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

© 2008 Microchip Technology Inc. Preliminary DS70292B-page 363

dsPIC33FJ32GP302/304, d	dsPIC33FJ64GPX02/X04,	AND dsPIC33FJ128GPX02/X04
NOTES:		

APPENDIX A: REVISION HISTORY

Revision A (September 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the dsPIC33F Family Reference Manual, which can be obtained from the Microchip website (www.microchip.com).

The major changes are referenced by their respective section in the following table.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Note 1 added to all pin diagrams (see "Pin Diagrams") Add External Interrupts column and Note 3 to the "dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and
Section 1.0 "Device Overview"	dsPIC33FJ128GPX02/X04 Controller Families" table Updated parameters PMA0, PMA1, and PMD0 through PMPD7
Decition 1.0 Bevice Overview	(Table 1-1)
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx")
	IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx")
	IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx")
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 7-1)
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources"
	Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4)
Section 20.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 20-3
Section 26.0 "Special Features"	Added Note 2 to Figure 26-1
	Added Note after second paragraph in Section 26.2 "On-Chip Voltage Regulator"
Section 29.0 "Electrical Characteristics"	Updated Max MIPS for temperature range of -40°C to +125°C in Table 29-1
	Updated typical values in Thermal Packaging Characteristics in Table 29-3
	Added parameters DI11 and DI12 to Table 29-9
	Updated miminum values for parameters D136 (TRW) and D137 (TPE) and removed typical values in Table 29-12
	Added Extended temperature range to Table 29-13
	Updated parameter AD63 and added Note 3 to Table 29-40 and Table 29-41

dsPIC33FJ32GP302/	304, dsPIC33FJ64	IGPX02/X04, AND	dsPIC33FJ128GPX0	2/X04
NOTES:				

INDEX

A
A/D Converter241
DMA241
Initialization
Key Features
AC Characteristics
Load Conditions
ADC Module
ADC11 Register Map42
Alternate Vector Table (AIVT)77
Arithmetic Logic Unit (ALU)24
Assembler
MPASM Assembler306
В
Barrel Shifter
Bit-Reversed Addressing
Example57
Implementation57
Sequence Table (16-Entry)58
Block Diagrams
16-bit Timer1 Module
A/D Module
Connections for On-Chip Voltage Regulator291 DCI Module235
Device Clock
DSP Engine
dsPIC33FJ32GP302/304,
dsPIC33FJ64GPX02/X04,
and dsPIC33FJ128GPX02/X0414
dsPIC33FJ32GP302/304,
dsPIC33FJ64GPX02/X04,
and dsPIC33FJ128GPX02/X04 CPU Core
ECAN Module
Input Capture
PLL
Reset System
Shared Port Structure
SPI189
Timer2 (16-bit)
Timer2/3 (32-bit)
UART
Watchdog Timer (WDT)292
C
C Compilers
MPLAB C18306
MPLAB C30306
Clock Switching141
Enabling141
Sequence
Erasing a Program Memory Page67
Initiating a Programming Sequence
Loading Write Buffers68
Port Write/Read147
PWRSAV Instruction Syntax143
Code Protection
Comparator Module
Configuration Bits
Configuration Register Map
Configuring Analog Port Pins

CPU	
Control Register	20
CPU Clocking System	132
PLL Configuration	
Selection	
Sources	132
Customer Change Notification Service	
Customer Notification Service	
Customer Support	
_	
D	
Data Accumulators and Adder/Subtracter	26
Data Space Write Saturation	28
Overflow and Saturation	
Round Logic	27
Write Back	
Data Address Space	31
Alignment	
Memory Map for dsPIC33FJ128GP202/204	
and dsPIC33FJ64GP202/204 Devices	
with 8 KB RAM	33
Memory Map for dsPIC33FJ128GP802/804	
and dsPIC33FJ64GP802/804 Devices	
with 16 KB RAM	34
Memory Map for dsPIC33FJ32GP302/304	
Devices with 4 KB RAM	32
Near Data Space	
Software Stack	
Width	
Data Converter Interface (DCI) Module	
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	311
DCI	01
Introduction	234
DCI Module	200
Register Map	47
Development Support	
DMA Module	500
DMA Register Map	43
DMAC Registers	12
DMAXCNT	
DMAXCON	
DMAXPAD	
DMAxREQ	
DMAXREQ	
DMAXSTB	
Doze Mode	
DSP Engine	
Multiplier	26

E		Receive Overflow Register (CiRXOVF1)	229
ECAN Module		ECAN Transmit/Receive Error Count	044
CiBUFPNT1 register	221	Register (CiEC)	21
CiBUFPNT2 register	222	ECAN TX/RX Buffer m Control Register	00
CiBUFPNT3 register	222	(CiTRmnCON)	
CiBUFPNT4 register	223	Electrical Characteristics	
CiCFG1 register	219	AC	
CiCFG2 register	220	Enhanced CAN Module	209
CiCTRL1 register		Equations	
CiCTRL2 register		Device Operating Frequency	
CiEC register		Errata	12
CiFCTRL register		F	
CiFEN1 register		•	
CiFIFO register		Flash Program Memory	
CiFMSKSEL1 register		Control Registers	
		Operations	64
CilNTF register		Programming Algorithm	6
CilNTE register		RTSP Operation	64
CilNTF register		Table Instructions	6
CiRXFnEID register		Flexible Configuration	28
CiRXFnSID register			
CiRXFUL1 register		l	
CiRXFUL2 register		I/O Ports	14
CiRXMnEID register		Parallel I/O (PIO)	
CiRXMnSID register	227	Write/Read Timing	
CiRXOVF1 register	229	I ² C	
CiRXOVF2 register	229	Operating Modes	10/
CiTRmnCON register	230	Registers	
CiVEC register	214	In-Circuit Debugger	
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	45		
ECAN1 Register Map (C1CTRL1.WIN = 0)		In-Circuit Emulation	
ECAN1 Register Map (C1CTRL1.WIN = 1)		In-Circuit Serial Programming (ICSP)	
Frame Types		Input Capture	
Modes of Operation		Registers	
Overview		Input Change Notification	
ECAN Registers	200	Instruction Addressing Modes	
Acceptance Filter Enable Register (CiFEN1)	221	File Register Instructions	
Acceptance Filter Extended Identifier	22 1	Fundamental Modes Supported	5
•	225	MAC Instructions	5
Register n (CiRXFnEID)	223	MCU Instructions	5
Acceptance Filter Mask Extended Identifier	207	Move and Accumulator Instructions	5
Register n (CiRXMnEID)	221	Other Instructions	5
Acceptance Filter Mask Standard Identifier	007	Instruction Set	
Register n (CiRXMnSID)	227	Overview	300
Acceptance Filter Standard Identifier		Summary	29
Register n (CiRXFnSID)		Instruction-Based Power-Saving Modes	
Baud Rate Configuration Register 1 (CiCFG1)		ldle	
Baud Rate Configuration Register 2 (CiCFG2)		Sleep	
Control Register 1 (CiCTRL1)	212	Internal RC Oscillator	
Control Register 2 (CiCTRL2)	213	Use with WDT	29
FIFO Control Register (CiFCTRL)		Internet Address	
FIFO Status Register (CiFIFO)	216	Interrupt Control and Status Registers	
Filter 0-3 Buffer Pointer Register (CiBUFPNT1)		IECx	
Filter 12-15 Buffer Pointer Register			
(CiBUFPNT4)	223	IFSx	
Filter 15-8 Mask Selection Register		INTCON1	
(CiFMSKSEL2)	226	INTCON2	
Filter 4-7 Buffer Pointer Register (CiBUFPNT2)		IPCx	
Filter 7-0 Mask Selection Register		Interrupt Setup Procedures	
(CiFMSKSEL1)	225	Initialization	
Filter 8-11 Buffer Pointer Register	220	Interrupt Disable	
	222	Interrupt Service Routine	
(CiBUFPNT3)		Trap Service Routine	118
Interrupt Code Register (CiVEC)		Interrupt Vector Table (IVT)	7
Interrupt Enable Register (CiINTE)		Interrupts Coincident with Power Save Instructions	
Interrupt Flag Register (CiINTF)			
Receive Buffer Full Register 1 (CiRXFUL1)			
Receive Buffer Full Register 2 (CiRXFUL2)			
Receive Buffer Overflow Register 2 (CiRXOVF2)	229		

J		Program Memory	
JTAG Boundary Scan Interface	287	Interrupt Vector	30
JTAG Interface		Organization	
		Reset Vector	30
М		R	
Memory Organization			27
Microchip Internet Web Site	373	Reader Response	3/4
Modes of Operation		Register Map CRC	51
Disable		Dual Comparator	
Initialization		Parallel Master/Slave Port	
Listen All Messages		Real-Time Clock and Calendar	
Listen Only		Registers	5
Loopback		AD1CHS0 (ADC1 Input Channel 0 Select	251
Normal Operation		AD1CHS123 (ADC1 Input Channel 1, 2,	0
Modulo Addressing		3 Select)	250
Applicability		AD1CON1 (ADC1 Control 1)	
Operation Example		AD1CON2 (ADC1 Control 2)	
Start and End Address		AD1CON3 (ADC1 Control 3)	
W Address Register Selection		AD1CON4 (ADC1 Control 4)	
MPLAB ASM30 Assembler, Linker, Librarian		AD1CSSL (ADC1 Input Scan Select Low)	
MPLAB ICD 2 In-Circuit Debugger MPLAB ICE 2000 High-Performance Universal	307	AD1PCFGL (ADC1 Port Configuration Low)	
In-Circuit Emulator	307	CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	
MPLAB Integrated Development Environment	307	CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	222
Software	305	CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	222
MPLAB PM3 Device Programmer		CiBUFPNT4 (ECAN Filter 12-15 Buffer	
MPLAB REAL ICE In-Circuit Emulator System		Pointer)	223
MPLINK Object Linker/MPLIB Object Librarian		CiCFG1 (ECAN Baud Rate Configuration 1)	
		CiCFG2 (ECAN Baud Rate Configuration 2)	
N		CiCTRL1 (ECAN Control 1)	
NVM Module		CiCTRL2 (ECAN Control 2)	
Register Map	53	CiEC (ECAN Transmit/Receive Error Count)	
•		CIFCTRL (ECAN FIFO Control)	
0		CiFEN1 (ECAN Acceptance Filter Enable)	
Open-Drain Configuration	146	CiFIFO (ECAN FIFO Status)	216
Output Compare	185	CiFMSKSEL1 (ECAN Filter 7-0 Mask	
P		Selection)	
		CilNTE (ECAN Interrupt Enable)	
Packaging		CilNTF (ECAN Interrupt Flag)	217
Details		CiRXFnEID (ECAN Acceptance Filter n	225
Marking		Extended Identifier)	22
Peripheral Module Disable (PMD)		CiRXFnSID (ECAN Acceptance Filter n Standard Identifier)	22/
PICSTART Plus Development Programmer		CiRXFUL1 (ECAN Receive Buffer Full 1)	
Pinout I/O Descriptions (table)	15	CiRXFUL2 (ECAN Receive Buffer Full 2)	
PMD Module Register Map	53	CiRXMnEID (ECAN Acceptance Filter	220
PORTA		Mask n Extended Identifier)	227
Register Map	51 52	CiRXMnSID (ECAN Acceptance Filter	,
PORTB	51, 52	Mask n Standard Identifier)	227
Register Map	52	CiRXOVF1 (ECAN Receive Buffer Overflow 1)	
Power-on Reset (POR)		CiRXOVF2 (ECAN Receive Buffer Overflow 2)	
Power-Saving Features		CiTRBnSID (ECAN Buffer n Standard	
Clock Frequency and Switching		Identifier) 231, 23	2, 234
Program Address Space		CiTRmnCON (ECAN TX/RX Buffer m Control)	
Construction		CiVEC (ECAN Interrupt Code)	
Data Access from Program Memory		CLKDIV (Clock Divisor)	
Using Program Space Visibility	62	CORCON (Core Control)	
Data Access from Program Memory Using		DCICON1 (DCI Control 1)	
Table Instructions	61	DCICON2 (DCI Control 2)	
Data Access from, Address Generation		DCICON3 (DCI Control 3)	
Memory Map		DCISTAT (DCI Status)	
Table Read Instructions		DMACS0 (DMA Controller Status 0)	126
TBLRDH	61	DMACS1 (DMA Controller Status 1)	
TBLRDL	61	DMAxCNT (DMA Channel x Transfer Count)	
Visibility Operation		DMAxCON (DMA Channel x Control)	122
		DMAxPAD (DMA Channel x	
		Peripheral Address)	125

DMAxREQ (DMA Channel x IRQ Select)	123	S	
DMAxSTA (DMA Channel x RAM Start		Serial Peripheral Interface (SPI)	189
Address A)	124	Software Reset Instruction (SWR)	
DMAxSTB (DMA Channel x RAM Start		Software Simulator (MPLAB SIM)	
Address B)	124	Software Stack Pointer, Frame Pointer	
DSADR (Most Recent DMA RAM Address)	129	CALLL Stack Frame	54
I2CxCON (I2Cx Control)	197	Special Features of the CPU	
I2CxMSK (I2Cx Slave Mode Address Mask)	201	SPI Module	20
I2CxSTAT (I2Cx Status)	199	SPI1 Register Map	4
IFS0 (Interrupt Flag Status 0)8	37, 94	Symbols Used in Opcode Descriptions	
IFS1 (Interrupt Flag Status 1)8	9, 96	System Control	200
IFS2 (Interrupt Flag Status 2)9	1, 98	Register Map	5
IFS3 (Interrupt Flag Status 3)9	2, 99	register map	
IFS4 (Interrupt Flag Status 4)93	3, 100	T	
INTCON1 (Interrupt Control 1)	84	Temperature and Voltage Specifications	
INTCON2 (Interrupt Control 2)	86	AC	319
INTTREG Interrupt Control and Status Register	117	Timer1	
IPC0 (Interrupt Priority Control 0)	101	Timer2/3	
IPC1 (Interrupt Priority Control 1)	102	Timing Characteristics	17
IPC11 (Interrupt Priority Control 11)	111	CLKO and I/O	32
IPC14 (Interrupt Priority Control 14)		Timing Diagrams	52
IPC15 (Interrupt Priority Control 15)		10-bit A/D Conversion (CHPS = 01,	
IPC16 (Interrupt Priority Control 16)		SIMSAM = 0, ASAM = 0, SSRC = 000)	24
IPC17 (Interrupt Priority Control 17)			340
IPC18 (Interrupt Priority Control 18)		12-bit A/D Conversion (ASAM = 0,	24
IPC2 (Interrupt Priority Control 2)		SSRC = 000)	
IPC3 (Interrupt Priority Control 3)		Brown-out Situations	
IPC4 (Interrupt Priority Control 4)		DCI AC-Link Mode	
IPC5 (Interrupt Priority Control 5)		DCI Multi -Channel, I ² S Modes	
IPC6 (Interrupt Priority Control 6)		ECAN I/O	
IPC7 (Interrupt Priority Control 7)		External Clock	
IPC8 (Interrupt Priority Control 8)		I2Cx Bus Data (Master Mode)	
IPC9 (Interrupt Priority Control 9)		I2Cx Bus Data (Slave Mode)	
NVMCON (Flash Memory Control)		I2Cx Bus Start/Stop Bits (Master Mode)	
· · · · · · · · · · · · · · · · · · ·		I2Cx Bus Start/Stop Bits (Slave Mode)	
NVMKEY (Nonvolatile Memory Key)		Input Capture (CAPx)	
OCXCON (Output Compare x Control)		OC/PWM	
OSCCON (Oscillator Control)		Output Compare (OCx)	32
OSCTUN (FRC Oscillator Tuning)		Reset, Watchdog Timer, Oscillator Start-up	
PLLFBD (PLL Feedback Divisor)		Timer and Power-up Timer	32
PxTCON (PWM Time Base Control)255, 256		SPIx Master Mode (CKE = 0)	32
RCON (Reset Control)		SPIx Master Mode (CKE = 1)	330
RSCON (DCI Receive Slot Control)		SPIx Slave Mode (CKE = 0)	33
SPIxCON1 (SPIx Control 1)		SPIx Slave Mode (CKE = 1)	
SPIxCON2 (SPIx Control 2)		Timer1, 2 and 3 External Clock	32
SPIxSTAT (SPIx Status and Control)		Timing Requirements	
SR (CPU Status)2		CLKO and I/O	32
T1CON (Timer1 Control)		DCI AC-Link Mode	34
TCxCON (Input Capture x Control)		DCI Multi-Channel, I ² S Modes	339
TSCON (DCI Transmit Slot Control)		External Clock	
TxCON (Type B Time Base Control)	180	Input Capture	32 ⁻
TyCON (Type C Time Base Control)	181	Timing Specifications	
UxMODE (UARTx Mode)	204	10-bit A/D Conversion Requirements	349
UxSTA (UARTx Status and Control)	206	12-bit A/D Conversion Requirements	
Reset		CAN I/O Requirements	
Illegal Opcode6	9, 76	I2Cx Bus Data Requirements (Master Mode)	
Trap Conflict7	' 5, 76	I2Cx Bus Data Requirements (Slave Mode)	
Uninitialized W Register6	9, 76	Output Compare Requirements	
Reset Sequence		PLL Clock	
Resets	69	QEI External Clock Requirements	
		•	
		QEI Index Pulse Requirements	32
		Reset, Watchdog Timer, Oscillator Start-up	
		Timer, Power-up Timer and Brown-out	20
		Reset Requirements	
		Simple OC/PWM Mode Requirements	
		SPIx Master Mode (CKE = 0) Requirements	
		SPIx Master Mode (CKE = 1) Requirements	აპ(

SPIx Slave Mode (CKE = 0) Requirements	331
SPIx Slave Mode (CKE = 1) Requirements	333
Timer1 External Clock Requirements	325
Timer2 External Clock Requirements	326
Timer3 External Clock Requirements	326
U	
UART Module	
UART1 Register Map	40, 41
Universal Asynchronous Receiver	
Transmitter (UART)	203
Using the RCON Status Bits	76
V	
Voltage Regulator (On-Chip)	291
W	
Watchdog Time-out Reset (WDTR)	75
Watchdog Timer (WDT)	
Programming Considerations	292
WWW Address	
WWW, On-Line Support	12

dsPIC33FJ32GP302/304,	, dsPlC33FJ64GPX02/X04,	AND dsPIC33FJ128GPX02/X04
NOTES:		

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers receives e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

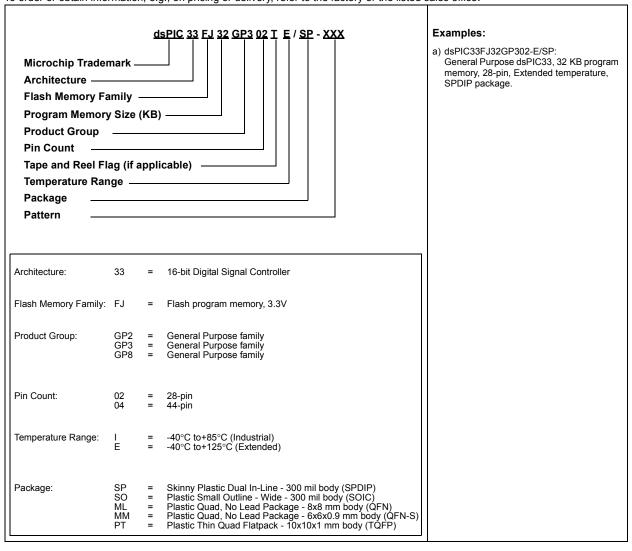
Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://support.microchip.com

READER RESPONSE


It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
Fror	m: Name		
	Company		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: (
App	lication (optional):		
Wou	ıld you like a reply?YN		
Dev	ice: dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04 and dsPIC33FJ128GPX02/X04 Data Sheet	Literature Number: DS70292B	
Que	estions:		
1.	What are the best features of this document?		
2.	2. How does this document meet your hardware and software development needs?		
3.	Do you find the organization of this document easy to follow? If not, why?		
4.	What additions to the document do you think would enhance the structure and subject?		
5.	What deletions from the document could be made without affecting the overall usefulness?		
6.	Is there any incorrect or misleading information (what and	where)?	
7.	How would you improve this document?		

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada

Tel: 905-673-0699 Fax: 905-673-6509 ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040

Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350 **EUROPE**

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham

Tel: 44-118-921-5869 Fax: 44-118-921-5820