
Intel® 80321 I/O Processor
Specification Update

May 12, 2003

Notice: The Intel® 80321 I/O processor (80321) may contain design defects or errors known as
errata that may cause the product to deviate from published specifications. Current characterized
errata are documented in this specification update.

Document Number: 273519-010

2 Specification Update

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® 80321 I/O processor may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright© Intel Corporation, 2003

AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740,
IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel
NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation,
Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer
logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare,
RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In,
TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Specification Update 3

Intel® 80321 I/O Processor

Contents

Revision History ... 5

Preface... 6

Summary Table of Changes... 7

Identification Information...11

Core Errata .. 13

Non-Core Errata... 27

Specification Changes ... 34

Specification Clarifications ... 35

Documentation Changes ... 36

4 Specification Update

Intel® 80321 I/O Processor

This page intentionally left blank.

Specification Update 5

Intel® 80321 I/O Processor
Revision History

Revision History

Date Version Description

May 13, 2003 010 • Added Specification Clarifications 7.

May 2003 009

• Revised Non-Core Errata 3.

• Added Non-Core Errata 17.

• Added Specification Clarifications 6.

• Added Document Change 12.

November 2002 008

• Removed C-0 Step column from Core Errata, Non-Core Errata, Specification
Changes, Specification Clarifications, Die Details, Device ID Registers. Not
planned to be implemented.

• Updated Status indicators in Core Errata and Non-Core Errata.

• Added Specification Change 3.

• Added Specification Clarifications 4 and 5.

September 2002 007 • Removed Specification Clarification 3. It does not apply to the Intel® 80321
I/O processor.

August 2002 006

• Added B-1 Stepping Column.

• Added Core Errata 19 through 21.

• Reworded Non-Core Errata 4.

• Added two Diagrams at end of Non-Core Errata 9.

• Added Non-Core Errata 15 and 16.

• Reworded Specification Change 1.

• Added Specification Clarification 3.

• Revised Die Details and Device ID Registers.

June, 2002 005

• Added Non-Core Errata 13 and 14.

• Added Specification Clarifications 1 and 2.

• Document Changes 1 and 4 through 11 are now incorporated in the latest
Design Guide revision.

April 11, 2002 004

• Added Core Errata 18 and Specification Changes 1 and 2.

• Added notes to Core Erratum 13 and 14 and edited workaround for
Non-Core Errata 10.

• Deleted previous Core Errata 12.

• Added Intel® 80321 I/O Processor Advance Information Datasheet to
related/affected documents

• Changed steppings for the fixes of Non-Core Errata 2, 3, 4, 7, 8, 9, 10, 11,
and 12.

• Added Die Details and Device ID Registers for B-0 stepping.

March 26, 2002 003

• Added Core Errata 12 and 14 (rearranged other numbering to fit new order).

• Added Non-Core Errata 8 through 12.

• Revised Non-Core Errata 2 through 7.

• Rearranged Document Change order to reflect sequential page flow.

• Added Document Change 2.

• Renumbered old Document Change 10 to 3.

March 14, 2002 002
• Added Non-Core Errata 7.

• Added Document Changes 1 through 3.

February 2002 001 Initial Release.

6 Specification Update

Intel® 80321 I/O Processor
Preface

Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of device and documentation errata,
specification clarifications and changes. It is intended for hardware system manufacturers and
software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are
no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents

Nomenclature

Errata are design defects or errors. These may cause the Product Name’s behavior to deviate from
published specifications. Hardware and software designed to be used with any given stepping must
assume that all errata documented for that stepping are present on all devices.

Specification Changes are modifications to the current published specifications. These changes
will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further highlight a
specification’s impact to a complex design situation. These clarifications will be incorporated in
any new release of the specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These will be incorporated in any new release of the specification.

Note: Errata remain in the specification update throughout the product’s lifecycle, or until a particular
stepping is no longer commercially available. Under these circumstances, errata removed from the
specification update are archived and available upon request. Specification changes, specification
clarifications and documentation changes are removed from the specification update when the
appropriate changes are made to the appropriate product specification or user documentation
(datasheets, manuals, etc.).

Title Order

Intel® 80321 I/O Processor Developer’s Manual 273517

Intel® 80321 I/O Processor Advance Information Datasheet 273518

Intel® 80321 I/O Processor Design Guide 273520

Specification Update 7

Intel® 80321 I/O Processor
Summary Table of Changes

Summary Table of Changes

The following table indicates the errata, specification changes, specification clarifications, or
documentation changes which apply to the Product Name product. Intel may fix some of the errata
in a future stepping of the component, and account for the other outstanding issues through
documentation or specification changes as noted. This table uses the following notations:

Codes Used in Summary Table

Stepping

X: Errata exists in the stepping indicated. Specification Change or
Clarification that applies to this stepping.

(No mark)

or (Blank box): This erratum is fixed in listed stepping or specification change does not
apply to listed stepping.

Page

(Page): Page location of item in this document.

Status

Doc: Document change or update will be implemented.

PlanFix: This erratum may be fixed in a future stepping of the product.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Row

Change bar to left of table row indicates this erratum is either new or
modified from the previous version of the document.

8 Specification Update

Intel® 80321 I/O Processor
Summary Table of Changes

Core Errata

No.
Steppings

Page Status Errata
A-0 B-0 B-1

1 X X X 14 NoFix Boundary Scan Is Not Fully Compliant to the IEEE 1149.1 Specification

2 X X X 14 NoFix Drain Is Not Flushed Correctly when Stalled in the Pipeline

3 X X X 15 NoFix Undefined Data Processing-‘like’ Instructions are Interpreted as an MSR
Instruction

4 X X X 15 NoFix Debug Unit Synchronization with the TXRXCTRL Register

5 X X X 15 NoFix Extra Circuitry Is Not JTAG Boundary Scan Compliant

6 X X X 16 NoFix Incorrect Decode of Unindexed Mode, Using Addressing Mode 5, Can Corrupt
Protected Registers

7 X X X 16 NoFix Load Immediately Following a DMM Flush Entry is Also Flushed

8 X X X 16 NoFix Trace Buffer Does Not Operate Below 1.3 V

9 X X X 16 NoFix Data Cache Unit Can Stall for a Single Cycle

10 X X X 17 NoFix Aborted Store that Hits the Data Cache May Mark Writeback Data As Dirty

11 X 18 Fixed CP15 Data Cache Unlock Command Can Cause Unlock in User Mode or when
Flushed from the Pipe in Supervisor Mode

12 X 19 Fixed Store to Cacheable Memory, Interrupted by an Exception, May Inadvertently Write
to Memory

13 X 21 Fixed Data Cache Dirty Bits May be Corrupted when a Line Invalidate is Followed
Immediately by a Store

14 X 22 Fixed Data cache dirty bits may be Corrupted when a Bus Error on a Cache Line Fill is
Followed Immediately by a Store

15 X X X 23 NoFix Performance Monitor Unit Event 0x1 Can Be Incremented Erroneously by
Unrelated Events

16 X X X 23 NoFix In Special Debug State, Back-to-Back Memory Operations Where the First
Instruction Aborts May Cause a Hang

17 X 24 Fixed Instruction Memory Management Unit Address Translation is Turned Off for the
First Fetch After Exiting Special Debug State

18 X 25 Fixed Data cache dirty bits may be corrupted when a store to cacheable memory occurs
during a tag replacement for a different cache line

19 X X X 28 NoFix Accesses to the CP15 ID register with opcode2 > 0b001 returns unpredictable
values

20 X X X 28 NoFix Disabling and re-enabling the MMU can hang the core or cause it to execute the
wrong code

21 X X X 29 NoFix Updating the JTAG parallel register requires an extra TCK rising edge

Specification Update 9

Intel® 80321 I/O Processor
Summary Table of Changes

Non-Core Errata

No.
Steppings

Page Status Errata
A-0 B-0 B-1

1 X X X 30 NoFix The SSP TXD Does Not Retain the Value of the Last Bit Transferred

2 X X X 30 NoFix The ATU Returns Invalid Data for the DWORD that Target Aborted from the MCU
when Using 32-Bit Memory, ECC Enabled and in PCI Mode

3 X X X 30 NoFix PBI Issue When Using 16-bit PBI Transactions in PCI Mode

4 X X X 31 NoFix All-zero Result Buffer” for the AAU is not Implemented

5 X X X 31 NoFix MCU Pointers are Incorrect following a Restoration from a Power Fail

6 X X X 31 NoFix PMU Does Not Account for when the Arbiter Deasserts GNT# One Cycle before
FRAME#

7 X 32 Fixed SCKE[1:0] Contention During a Power Failure

8 X 32 Fixed Core Write of ECC Error Not Setting Bit #23/#24 Correctly in ECAR

9 X 33 Fixed Improper Power Fail Sequence During a Power Failure

10 X 35 Fixed PLL Unable to Lock at Reset

11 X X X 36 NoFix Lost Data During Bursts of Large Number of Partials with 32-bit ECC Memory

12 X 36 Fixed P_RST# to PCI-X Initialization Pattern Hold Time (Tprh)

13 X X X 37 NoFix The MTTR1 (Core Multi-Transaction Timer) is not operating due to improper behavior
of the core internal bus request signal (REQ#)

14 X X X 37 NoFix The MCU supports a page size of 2 Kbytes for 64-bit mode

15 X X 38 Fixed
A logic error in the Memory Controller Unit (MCU) incorrectly reports an ECC Error on
memory writes. This error does not corrupt memory contents or data. There are two
different conditions that exacerbate the issue.

16 X X 42 Fixed Intel® 80321 I/O Processor/PCI-X Bridge Unexpected Split Completion Error

17 X X 43 NoFix Vih Minimum Input High Voltage (Vih) level for the PCI pins

10 Specification Update

Intel® 80321 I/O Processor
Summary Table of Changes

Specification Changes

No.
Steppings

Page Specification Changes
A-0 B-0 B-1

1 X X X 44 DDR VCC and DDR VREF minimum specifications need to be changed on the
A-0 and B-0/B-1 steppings

2 X X X 44 DDR SDRAM signal timing change, TVA3

3 X X X 45 P_BMI (AE23) added to B-0/B-1 Steppings

Specification Clarifications

No.
Steppings

Page Status Specification Clarifications
A-0 B-0 B-1

1 X X X 47 NoFix
The Intel® 80321 I/O processor is compliant with the PCI Local
Bus Specification, Revision 2.2 but it is not compliant with PCI
Local Bus Specification, Revision 2.3

2 X X X 47 NoFix
Modifications to the Hot-Debug procedure are necessary for the
Intel® 80321 I/O processor when flat memory mapping is not
used (Virtual Address = Physical Address)

3 X X X 47 Doc Removed. Does not apply to the Intel® 80321 I/O processor.

4 X X X 48 Doc BAR0 Configuration When Using the Messaging Unit (MU)

5 X X X 48 Doc Reading Unpopulated SDRAM Memory Banks

6 X X X 48 Doc 32-bit Writes-to-Unaligned 64-bit Addresses, are Promoted to
64-bit Aligned Writes

7 X X X 49 Doc In-order Delivery not guaranteed for data blocks described by a
single DMA descriptor

Documentation Changes
No. Document Revision Page Status Documentation Changes

1 273520-002 49 In Guide Table 4 Page 18 second row has incorrect data

2 273518-001 49 Doc Table 9 (Sheet 3 of 5), page 31 and Table 10 (Sheet 5
of 5), page 38 have incorrect data

3 273518-001 49 Doc Table 10 (Sheet 2 of 5), page 35 has incorrect data

4 273520-001 49 In Guide Section 6.2.2 on page 37 has incorrect data

5 273520-002 50 In Guide Figure 14 on page 40 has missing text

6 273520-002 50 In Guide Table 18, page 61 has missing data and incorrect data

7 273520-002 51 In Guide Section 7.6.1 page 75 has incorrect data

8 273520-002 51 In Guide Section 7.6.1 page 76 has incorrect data

9 273520-002 51 In Guide Section 7.6.1 page 77 has incorrect data

10 273520-002 51 In Guide Section 7.6.3 page 78 has missing data and incorrect
data

11 273520-002 52 In Guide Section 14.1 page 113 has missing data

12 273518-001 52 Doc Channel Control Register; Channel Enable, page 248

Specification Update 11

Intel® 80321 I/O Processor
Identification Information

Identification Information

Markings

Topside Markings

Intel® 80321 Processor

SLxxx

M

© ‘2001

{FPO#}
FW80321Mxxx

INTEL

12 Specification Update

Intel® 80321 I/O Processor
Identification Information

Die Details

Stepping Part Number
QDF (Q)/

Specification
Number (SL)

Voltage
(V)

Intel®
80321 I/O
Processor

Speed
(MHz)

Notes

A-0

A-0

A-0

A-0

A-0

A-0

A-0

A-0

FW80321M400

FW80321M600

FW80321M400

FW80321M600

FW80321M400

FW80321M600

FW80321M400

FW80321M600

Q237

Q238

Q359

Q284

Q285

Q286

SL5PC

SL5PD

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

400

600

400

600

400

600

400

600

Samples - limited testing

Samples - limited testing

Samples

Samples

General Samples

General Samples

Production Material

Production Material

B-0

B-0

B-0

B-0

B-0

B-0

B-0

B-0

FW80321M400

FW80321M600

FW80321M400

FW80321M600

FW80321M400

FW80321M600

FW80321M400

FW80321M600

Q377

Q379

Q378

Q380

Q385

Q386

SL69L

SL69M

3.3

3.3

3.3

3.3

3.3

3.3

3.3

3.3

400

600

400

600

400

600

400

600

Samples - limited testing

Samples - limited testing

General Samples

General Samples

General Samples

General Samples

Production Material

Production Material

B-1

B-1

B-1

B-1

B-1

B-1

FW80321M400

FW80321M600

FW80321M400

FW80321M600

FW80321M400

FW80321M600

Q464

Q465

Q466

Q467

SL6R2

SL6R3

3.3

3.3

3.3

3.3

3.3

3.3

400

600

400

600

400

600

Samples - limited testing

Samples - limited testing

General Samples

General Samples

Production Material

Production Material

Device ID Registers

Device and
Stepping

Processor Device ID
(CP15, Register0 - opcode_2=0)

ATU
Device ID
(ATUDID)

ATU
Revision ID
(ATURID)

JTAG
Device ID

A-0 (400 MHz)

A-0 (600 MHz)

0x69052420

0x69052430

0x0318

0x0319

0x00

0x00

0x09266013

0x09267013

B-0 (400 MHz)

B-0 (600 MHz)

0x69052C21

0x69052C31

0x0318

0x0319

0x01

0x01

0x19266013

0x19267013

B-1 (400 MHz)

B-1 (600 MHz)

0x69052C22

0x69052C32

0x0318

0x0319

0x02

0x02

0x29266013

0x29267013

Specification Update 13

Intel® 80321 I/O Processor
Core Errata

Core Errata

1. Boundary Scan Is Not Fully Compliant to the IEEE 1149.1 Specification
Problem: The IEEE Standard 1149.1 specifies the boundary scan logic to support two main goals:

1. To allow the interconnections between the various components to be tested, test data can be
shifted into all the boundary-scan register cells associated with component output pins and
loaded in parallel through the component interconnections, into those cells associated with
inputs pins; and

2. To allow the components on the board to be tested, the boundary-scan register can be used as a
means of isolating on-chip system logic from stimuli received from surrounding components,
while an internal self-test is performed. Alternatively, when the boundary-scan register is
suitably designed, it can permit a limited slow-speed static test of the on-chip system logic,
since it allows delivery of test data to the component and examination of the test results. (IEEE
std. 1149.1-1990, page 1-5)

The Intel® Xscale™ core does not support the second goal, because it does not support the optional
INTEST or RUBIST instructions. The Intel® Xscale™ core is not required to provide these
instructions, however, since it doesn't, this makes the following statement practically invalid.

The IEEE std. 1149.1 description of the SAMPLE/PRELOAD instruction states that, “When the
SAMPLE/PRELOAD instruction is selected, the state of all signals flowing through system pins
(input or output) shall be loaded into the boundary scan register on the rising edge of the TCK in
the Capture-DR controller state.” (Page 7-8).

The boundary scan cells of the Intel® Xscale™ core bi-directional pads, do not capture the data
driven from the on-chip system logic to the pins, when these pads are acting as outputs. This would
only be useful when trying to capture the data driven from the on-chip logic, during normal
operation of the assembled board. However, the Intel® Xscale™ core does not allow single
stepping of its clocks. Thus, even when the Intel® Xscale™ core did provide the compliant
boundary scan cell, it would be extremely difficult (or impossible) to synch the boundary scan
logic with the state of the on-chip logic. Therefore, this feature of the boundary scan cells is not
useful. This has NO effect on the ability to determine the integrity of the interconnections on
boards, which is what the Intel® Xscale™ core boundary scan logic was designed to support.

Workaround: No workaround.

Status: NoFix.

2. Drain Is Not Flushed Correctly when Stalled in the Pipeline
Problem: In a load followed by a drain scenario, the load table walks and then gets a precise data abort. The

core fetches the address for the abort handler, but in the same cycle does not flush the drain.

Implication: Not a functional problem, but may effect performance.

Workaround: No workaround.

Status: NoFix.

14 Specification Update

Intel® 80321 I/O Processor
Core Errata

3. Undefined Data Processing-‘like’ Instructions are Interpreted as an MSR
Instruction

Problem: The instruction decode allows undefined opcodes, which look similar to the MSR (Move to Status
register from an ARM register) instruction, to be interpreted as an MSR instruction. The
mis-decoded MSR instruction also adds a SUBNV PC,0x4 to the instruction flow.

Workaround: Do not use undefined opcodes of this form:

Status: NoFix.

4. Debug Unit Synchronization with the TXRXCTRL Register
Problem: The RX bit in the TXRXCTRL (TX/RX Control) register comes from the JTAG clock domain to

the core clock domain, and several cycles are needed for the register in the core clock domain to
update. During this time, a debugger, which is running a fast JTAG clock relative to the core clock,
may read the bit before it updates in the register, thus reading the old value.

Workaround: The JTAG clock should be slower than the core clock.

Status: NoFix.

5. Extra Circuitry Is Not JTAG Boundary Scan Compliant
Problem: The IEEE 1149.1 (JTAG) specification states that, “when the HIGHZ instruction is selected, all

system logic outputs.... shall immediately be placed in an inactive drive state”. The JTAG unit on
the core creates an internal ‘float’ signal, which is driven to the I/O pads. This signal is derived
from the HIGHZ instruction; however, the HIGHZ instruction gets flopped by a rising edge of
TCK first, before it is able to ‘float’ the pads. This is in violation of the JTAG specification, specif-
ically the term “immediately”. It is possible for TCK to stop after the HIGHZ instruction is loaded
and thus the pads may never ‘float’.

Workaround: Do not stop the JTAG clock (TCK).

Status: NoFix.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - 0 0 0 1 0 - 1 0 - - - - - - - - - - - - 0 0 1 0 - - - -

- - - - 0 0 0 1 0 - 1 0 - - - - - - - - - - - - 0 1 0 0 - - - -

- - - - 0 0 0 1 0 - 1 0 - - - - - - - - - - - - 0 1 1 0 - - - -

Specification Update 15

Intel® 80321 I/O Processor
Core Errata

6. Incorrect Decode of Unindexed Mode, Using Addressing Mode 5, Can
Corrupt Protected Registers

Problem: The instruction decoder incorrectly decodes the valid combination of P=0, U=1 and W=0, when
using unindexed mode in addressing mode 5 (load and store coprocessor). In this case, the LDC or
STC should produce consecutive address loads or stores, with no base update until the coprocessor
signals that it has received enough data. Instead, the instruction gets separated into an LDR/STR
and a CP access.

The LDR/STR gets decoded as a post-index address, updating the base register. Due to the
decoding as post-index, the ‘option’ bits, normally reserved for the coprocessor in unindexed
mode, become the 8-bit offset value used in the base register update calculation.

The implication is, that protected registers can be corrupted. This errata can cause the corruption of
FIQ registers, R13-R14, in user and system modes when the LDC instruction is executed using
unindexed addressing mode. It can also cause the corruption of FIQ registers, R8-R12, in any mode,
when the LDC instruction is executed using unindexed addressing. The R13 register in debug mode
may also be corrupted during an LDC in any mode. In the case of STC, only Rn is corrupted.

Unexpected memory accesses can also occur. In the case of an LDC, any memory location may be
accessed, since the FIQ registers may be improperly used as the base register. In the case of an
STC, the memory word located at Rn+4 is corrupted. This is the memory location immediately
following the locations which should be modified by STC unindexed.

Workaround: Do not use unindexed addressing in addressing mode 5 – Load and Store Coprocessor.

Status: NoFix.

7. Load Immediately Following a DMM Flush Entry is Also Flushed
Problem: A load that immediately follows a data memory management (DMM) flush entry command, that

also hits the data TLB, is also flushed. Therefore, the instruction immediately following the flush,
is also flushed from the data TLB.

Workaround: All flush entry commands to the data TLB must be followed by two NOPs. The first ensures the
erratum is not encountered, and the second ensures the speed path is not hit.

Status: NoFix.

8. Trace Buffer Does Not Operate Below 1.3 V
Problem: The trace buffer within the debug unit is not guaranteed to operate, due to voltage sensitivity, when

the core voltage supply is below 1.3 V.

Workaround: Make sure the voltage is above 1.3 V during debug.

Status: NoFix.

9. Data Cache Unit Can Stall for a Single Cycle
Problem: When the data cache unit retries an operation that is in the pending buffer, a single cycle stall

occurs.

Workaround: No workaround. This is a performance issue only.

Status: NoFix.

16 Specification Update

Intel® 80321 I/O Processor
Core Errata

10. Aborted Store that Hits the Data Cache May Mark Writeback Data As Dirty
Problem: When there is an aborted store that hits clean data in the data cache (data in an aligned four word

range, that has not been modified from the core, since it was last loaded in from memory or
cleaned), the data in the array is not modified (the store is blocked), but the dirty bit is set.

When the line is then aged out of the data cache or explicitly cleaned, the data in that four word
range is evicted to external memory, even though it has never been changed. In normal operation,
this is nothing more than an extra store on the bus, that writes the same data to memory as is
already there.

Here is the boundary condition where this might be visible:

1. a cache line is loaded into the cache at address A

2. another master externally modifies address A

3. a core store instruction attempts to modify A, hits the cache, aborts because of MMU
permissions, and is backed out of the cache. That line should not be marked dirty, but because
of this errata is marked as dirty.

4. the cache line at A then ages out or is explicitly cleaned. The original data from location A is
evicted to external memory, overwriting the data written by the external master.

This only happens when software is allowing an external master to modify memory, that is,
writeback or write-allocate in the page tables, and depending on the fact that the data is not 'dirty' in
the cache, to preclude the cached version from overwriting the external memory version. When
there are any semaphores or any other handshaking to prevent collisions on shared memory, this
should not be a problem.

Workaround: For this shared memory region, mark it as write-through memory in the page table. This prevents
the data from ever being written out as dirty.

Status: NoFix.

Specification Update 17

Intel® 80321 I/O Processor
Core Errata

11. CP15 Data Cache Unlock Command Can Cause Unlock in User Mode or
when Flushed from the Pipe in Supervisor Mode

Problem: Correct behavior for the “unlock data cache” command (MCR p15, 0, Rd, c9, c2, 1), issued in user
mode, is to generate an invalid instruction exception and not affect the state of the cache. Instead, the
exception is generated, but the cache is unlocked anyway. In this case, the illegal instruction event is
generated. When the OS does not attempt to recover from illegal instructions, this erratum is no issue.

A secondary effect of this erratum, iMs that even in a privileged mode, when an instruction should
execute, the data cache unlock hardware activity can occur while the actual MCR instruction is still
in the execution pipeline. When an interrupt or some other event causes the instruction to be
flushed from the pipe, the hardware activity may still occur. It is likely that the instruction executes
shortly after returning from the handler, so unlocking the cache early probably is not an issue,
unless the event handler code makes an assumption about data cache locking.

Workaround: When user mode code is well controlled, the OS can detect that user code did the illegal operation and
report the error for software debugging purposes. Then re-code the user application and try again.

When code deliberately trying to crash the machine is a concern, here are possible ways to recover
when the cache is unlocked in user mode:

1. When data cache locking is used with the knowledge of the OS, to keep local copies of external
data for performance, it is possible, for the OS to fix things. The OS detects that the invalid
instruction fault was caused by a coprocessor 15 operation, cleans out the cache, and relocks the
data that was supposed to be locked. The offending user application should be terminated.

2. When data cache locking is used as SRAM as part of the data cache (allocated with the data
cache line operation, rather than loading in existing memory), it is difficult for the machine to
recover. When any of the SRAM locations are evicted, external memory at a random location
can be corrupted. One solution is to immediately turn off the data cache at the beginning of the
invalid instruction event handler to avoid evictions in the cache. The SRAM contents can then be
copied to scratch memory, the cache cleaned and invalidated, and the SRAM reallocated and
locked. At that point, the contents can be copied back in and operation can continue.

When early unlocking of the data cache in privileged modes is a concern, the following software
workarounds exist:

1. Disable interrupts before unlocking the data cache, and ensure that no abort conditions exist
around the unlock code. Imprecise external data aborts and parity errors are still potential
issues, when software attempts to recover from these situations.

2. Do not make assumptions about data cache lock state in the event handlers. When the event
handler code does not require access to locked data cache regions, the early unlock is
transparent, as the unlock MCR is executed once the handler is finished.

Status: Fixed.

18 Specification Update

Intel® 80321 I/O Processor
Core Errata

12. Store to Cacheable Memory, Interrupted by an Exception, May Inadvertently
Write to Memory

Problem: In some cases, when a store to a cacheable region of memory occurs simultaneously with an
exception, the store is not properly cancelled and may update memory. This may occur even when
the store did not have permission to write to that memory region, and no data abort is recorded at
the time memory is incorrectly modified. It is important that developers review this erratum and
assess the impact to their specific application to ensure that no potential exists for data corruption.

This combination of events required for the erratum to occur:

1. A memory operation occurs that requires a cache line fill, which in-turn causes a cache line
eviction. For example, a load or prefetch.

2. A few cycles later, an exception event occurs. The following exception events cause the
erratum:

a. interrupt

b. prefetch abort

c. instruction breakpoint

d. invalid opcode fault

e. imprecise data abort

A precise data abort may not cause the erratum.

3. The instruction which is being flushed by the exception event is a store to write-back memory,
and the store address coincides with the cache line that is being evicted to make room for the
cache line fill.

4. Returning data on the bus causes a data cache stall at a specific cycle.

Result:

The store writes to memory when it should not. When the store is to write-back memory, the cache
line is evicted and external memory is incorrectly updated as when that store had occurred. The
exception return points to the store instruction.

When the store is to write-through memory, the store instruction is properly flushed and external
memory is not updated.

Memory access permissions are not checked before the store updates the cache. This means the
store may change memory without permission and without taking an abort.

When the store did a pre- or post-index update on its address, the register file correctly flushes the
update. This means that when the store is executed on return from the exception, correct data is
stored into memory at the correct address.

Specification Update 19

Intel® 80321 I/O Processor
Core Errata

Example Manifestations:

The following examples explain how the erratum may manifest itself. The examples are intended
to help developers assess the impact upon their applications.

Note: This is not an exhaustive list, there may be other examples depending upon how specific the
architecture of the application code is.

1. Copy on Write -

In a multi-tasking OS, a process has read access to a shared memory region, but not write
access. Upon a write, the data abort handler creates a physical copy of that region and allow
write access to that new region.

In the failing case, the shared read-only region can be updated incorrectly and without a data
abort. Eventually, when the original process is returned to, a data abort happens, but the
problem is that the memory has already been corrupted. Linux supports Copy on Write and
when activated, can experience the erratum. Other OSs may also be affected.

2. Flags to memory shared with interrupt handler –

When there is a flag used to communicate between a process and the interrupt handler, and the
store to set the flag is being set by the store that is interrupted, the interrupt handler may see
the flag set, do the required work, and clear the flag. Upon return to the

interrupted process, the store instruction would be executed and the flag set. The interrupted
process would incorrectly assume that the interrupt handler had not yet seen that flag and
serviced it. This flag error can also occur between two task switched processes.

3. Debug -

Instruction breakpoints and prefetch aborts on a store can cause the erratum. When a user is
single stepping through code, stops with an instruction breakpoint on a store, and then checks
external memory for the pre-store value of the address the store is about to write to, the
debugger may see the post store value.

Workaround: The global workaround for the erratum would be to disable write-back cache within the
application. This ensures the erratum does not manifest itself. However, it is understood that this
can be cumbersome in performance-sensitive applications. As an alternative, developers may
simply prevent the conditions from occurring simultaneously which would cause the erratum to be
manifested. By preventing these conditions, one effectively has implemented a workaround.

1. Disable write-back cache. This can apply to Linux-based applications due to the fact that
Linux utilizes copy-on-write.

2. Enable write-back cache and insure the code does not allow the simultaneous occurrence of
the conditions required to manifest the erratum.

Here are some workaround options for the specific examples listed above:

1. Copy on Write -

This section is concerned with permissions as applied to first Linux* and then to an embedded
real-time controller. In Linux, Copy on Write, is a memory allocation technique used to
provide a performance boost. The erratum can be avoided by setting the caching policy for a
copy-on-write read-protected page to write-through. There is no memory access penalties
because the memory is read-only. When a write occurs and a write-able copy is made, that
memory cache policy should be set to write-back. Without this change, errors may occur.

When concerned with a real-time controller, the purpose for using permissions usually is to
detect a misbehaving pointer or for quickly detecting runaway code. This erratum only applies
to the misbehaving pointer problem, which when missed on one misuse is most likely found
on the next, resulting in the software problem being found and fixed.

20 Specification Update

Intel® 80321 I/O Processor
Core Errata

2. Flags to memory shared with interrupt handler -

The impact of this problem most likely only involves a handful of sensitive variables for an
embedded controller. That is because most variables are used within a task. Only some
variables, which need to be passed from one task to another task, is affected. A classic example
variable would be a semaphore flag. These variables can be protected in one of three ways:

a. Locate the variable in locked cache or non-evicting mini-cache. This is the ideal solution
for time critical variables such as those passed between an interrupt handler and a
background processing task. A non-evicting mini-cache region can be created by setting
up a mini-cache memory region and then limiting all access to that region to a 2K aligned
address range. Because accesses are not outside the cache boundary, an eviction never
occurs and the memory behaves as though it were on-board RAM.

b. Surround the write of these variables with interrupt disable/enable commands. This is
often already done because manipulation of these variables exists in ‘critical code’ regions
where an interrupt between any of the instructions in the critical code region may cause an
error condition. Modifying a semaphore is a typical critical code example.

c. Use the atomic instructions, SWP or SWPB. Therefore, limiting the manipulation of
sensitive variables to these instructions avoids the erratum.

3. Debug / Breakpoints -

Most debug handlers flush the cache when a break occurs, which reduces the potential for a
cache eviction and reduces the potential for a system to be affected by the erratum. So there are
few times this erratum should be seen in a debug session, and misinterpreting an apparent bug
may be avoided by knowing where this erratum might occur.

Status: Fixed.

13. Data Cache Dirty Bits May be Corrupted when a Line Invalidate is Followed
Immediately by a Store

Problem: The dirty bits in the data cache can be corrupted by an ‘Invalidate Data Cache Line’ command to
address “A” immediately followed by any store to address “B” where address “B” and address “A”
are to the same cache set (bits 9:5 of the two addresses are the same).

This can lead to clean or invalid data being marked dirty in the cache, or dirty data in the cache
being marked clean. Possible outcomes:

1. Invalid data being marked dirty can lead to unpredictable four word stores to an unpredictable
address in memory.

2. Valid, but clean write-back data, being marked dirty can lead to unnecessary evictions to
external memory.

3. Valid dirty data being marked clean can lead to data corruption. External memory is not
updated upon cache line replacement.

Workaround: Do not perform a store operation immediately following an ‘Invalidate Data Cache Line’
command. ‘Invalidate Data Cache Line’ is a supervisor mode instruction. Placing a NOP between
these two operations avoids the erratum.

Note: For more details, see the workaround information for “Data cache dirty bits may be corrupted when
a store to cacheable memory occurs during a tag replacement for a different cache line” on page 25.

Status: Fixed.

Specification Update 21

Intel® 80321 I/O Processor
Core Errata

14. Data cache dirty bits may be Corrupted when a Bus Error on a Cache Line
Fill is Followed Immediately by a Store

Problem: This erratum is very similar to erratum #14. The problem is the same, but the root cause is
different. When certain types of bus errors occur, and a store to the cache occurs near the time
when the error is reported, the dirty bits in the array in the same set as the store may be corrupted.
The bus errors that can cause this erratum are a multi-bit ECC error on a returning cache line fill or
assertion of the external ABORT pin on a returning cache line fill.

This can lead to clean or invalid data being marked dirty in the cache, or dirty data in the cache
being marked clean. Possible outcomes:

1. Invalid data being marked dirty can lead to unpredictable four word stores to an unpredictable
address in memory.

2. Valid, but clean write-back data, being marked dirty can lead to unnecessary evictions to
external memory.

3. Valid dirty write-back data being marked clean can lead to data corruption. External memory
will not be updated upon cache line replacement.

Bus errors reported on any store, or on loads that are smaller than 32 bytes do not cause this bug.

Workaround: Set up the page tables such that unimplemented regions of memory do not have valid page table
entries. A precise data abort occurs on accesses to those regions and no bus error is seen.

Mark any region of memory that has valid memory locations and unimplemented memory
locations within one page as non-cacheable, to avoid cache line fills. This precludes the erratum.
An example of this might be a memory mapped register region.

Mark any region of memory that may generate bus aborts that cannot be prevented by appropriate
page table entries as non-cacheable.

When there is some reason that code must do a cache line fill that has a chance of creating a bus
abort, then avoid store instructions in supervisor mode while potentially aborting cache line fills
are pending. The drain write buffer CP15 command issued right after the cache line fill can be used
to stall the core during these transactions.

For any triggering abort that cannot be avoided by page table permissions or cacheability (such as
multi-bit ECC error on a cache line fill), there is no known workaround. Bus aborts should, in
general, be avoided during normal operation.

Note: For more details, see the workaround information for “Data cache dirty bits may be corrupted when
a store to cacheable memory occurs during a tag replacement for a different cache line” on page 25.

Status: Fixed.

22 Specification Update

Intel® 80321 I/O Processor
Core Errata

15. Performance Monitor Unit Event 0x1 Can Be Incremented Erroneously by
Unrelated Events

Problem: Event 0x1 in the performance monitor unit (PMU) can be used to count cycles in which the
instruction cache cannot deliver an instruction. The only cycles counted should be those due to an
instruction cache miss or an instruction TLB miss. The following unrelated events in the core, also
causes the corresponding count to increment when event number 0x1 is being monitored:

1. Any architectural event (e.g. IRQ, data abort)

2. MSR instructions which alter the CPSR control bits

3. Some branch instructions, including indirect branches and those mispredicted by the BTB

4. CP15 mcr instructions to registers 7, 8, 9, or 10 which involve the instruction cache or the
instruction TLB.

Each of the items above may cause the performance monitoring count to increment several times.
The resulting performance monitoring count may be higher than expected when the above items
occur, but never lower.

Workaround: There is no way to obtain the correct number of cycles stalled due to instruction cache misses and
instruction TLB misses. Extra counts due to branch instructions mispredicted by the BTB, may be
one component of the unwanted count that can be filtered out. The number of mispredicted
branches can also be monitored using performance monitoring event 0x6 during the same time
period as event 0x1. The mispredicted branch number can then be subtracted from the instruction
cache stall number generated by the performance monitor to get a value closer to the correct one.
Note that this only addresses counts contributed by branches that the BTB is able to predict. All the
items listed above still affect the count. Depending on the nature of the code being monitored, this
workaround may have limited value.

Status: NoFix.

16. In Special Debug State, Back-to-Back Memory Operations Where the First
Instruction Aborts May Cause a Hang

Problem: When back-to-back memory operations occur in the Special Debug State (SDS, used by ICE and
Debug vendors) and the first memory operation gets a precise data abort, the first memory
operation is correctly cancelled and no abort occurs. However, depending on the timing, the second
memory operation may not work correctly. The data cache may internally cancel the second
operation, but the register file may have scoreboarded registers for that second memory operation.

The effect is that the core may hang (due to a permanently scoreboarded register) or that a store
operation may be incorrectly cancelled.

Workaround: In Special Debug State, any memory operation that may cause a precise data abort should be
followed by a write-buffer drain operation. This precludes further memory operations from being
in the pipe when the abort occurs. Load Multiple/Store Multiple that may cause precise data aborts
should not be used.

Status: NoFix.

Specification Update 23

Intel® 80321 I/O Processor
Core Errata

17. Instruction Memory Management Unit Address Translation is Turned Off for
the First Fetch After Exiting Special Debug State

Problem: When the processor enters SDS (Special Debug State), the Instruction Memory Management Unit is
disabled. This means that the instruction TLB is no longer accessed and physical-to-virtual address
translation no longer occurs. The first code executed after exiting SDS mode should cause an instruction
TLB access and execute from the physical memory specified in the appropriate page table entry.

In certain timing cases, this may not occur. The physical address of the code that executes next is the
same as the virtual address, without regard to the page tables. This can cause the wrong code to execute.

Workaround: Depending on the nature of the special debug routines, one of the following code sequences may be
used to avoid this issue. These routines occur just before the CPSR restore instruction used to exit
SDS.

1. SDS code is cacheable (external or in mini-icache):

.align 5

mov r13, addr

@ Invalidate I-cache line, causes stall until all inst fetches complete

mcr p15, 0, r13, c7, c5, 1

CPSR restore

2. SDS code is non-cacheable (external or mini-icache):

.align 5

b next_cache_line

previous_cache_line:

CPSR restore

.align 5

next_cache_line:

b previous_cache_line

3. SDS code is either non-cacheable or cacheable (but cannot be located in mini-icache):

This workaround assumes that code is in a region mapped 1 to 1. This ensures the data access does
not actually get remapped to another region of memory which may be faster than the region
containing the debug handler. Note that the clean data cache line command used below is not
necessary when the location “addr” is not used to hold some state for the use of the debug handler.

mov rx, addr@ use some addr that is within the dbg hdlr

@ clean and invalidate D-cache line, make sure that addr is not in D-cache

mcr p15, 0, rx, c7, c6, 1

mcr p15, 0, rx, c7, c10, 1

b next_cache_line

.align 5 @ make sure we start fetching next cache line

@ before loading from it.

next_cache_line:

ldr rx, [rx]@ load from addr

mov rx, rx @ data dependency, waits for load to complete

CPSR restore

Status: Fixed.

24 Specification Update

Intel® 80321 I/O Processor
Core Errata

18. Data cache dirty bits may be corrupted when a store to cacheable memory
occurs during a tag replacement for a different cache line

Problem: The dirty bits in the data cache may become corrupted when a store to cacheable memory hits an
outstanding cache line fill and is presented to the cache during a tag replacement for a different
cache line. There is no reasonable way to avoid these events lining up in normal code. This erratum
is caused by a circuit race condition, and may be sensitive to voltage, temperature, or noise.

This can lead to clean or invalid data being marked dirty in the cache, or dirty data in the cache
being marked clean. Possible outcomes include:

• Invalid data being marked dirty can lead to unpredictable four-word stores to an unpredictable
address in memory.

• Valid, but clean write-back data being marked dirty can lead to unnecessary evictions to
external memory.

• Valid dirty data being marked clean can lead to data corruption. External memory will not be
updated upon cache line replacement.

Example 1. Scenario of Data-Cache Dirty Bit Becoming Corrupted

1. A store, of 0xaaaa to address 0x1000, hits write-back memory in the cache and marks it dirty.

2. Clean and invalidate commands are issued to address 0x1000, correctly pushing the data out of
the cache to memory.

At this point a clean invalid copy of the 0xaaaa data exists in the cache.

3. A store, of 0xbbbb to address 0x1000, is cleaned and invalidated and memory is updated
correctly.

4. The erratum occurs and the original, 0xaaaa copy of the data is incorrectly marked “dirty.” It is
then evicted, overwriting the 0xbbbb data in memory.

In an application, this may appear to be general memory corruption. It also may seem that the second
store did not occur correctly, when in fact the second store worked and old data overwrote it.

Workaround: In cache lines in the array that are marked “write-through,” the dirty bits are ignored. The
workaround for the bug is to make sure all cache lines that may be replaced in the data cache are
labeled “write-through” at all times (whether the lines are valid or not). Three things are necessary
for this to be the case:

• All cacheable memory regions must be configured as write-through

• In the reset handler, when the data cache is enabled, the write-through bit of all cache lines
must be set. This is accomplished with a code routine (supplied in Figure 1) that disables
interrupts, enables the data cache and MMU, and fills the cache with write-through data.

Even when these lines are invalidated, the write-through bit will stay set.

• No “allocate line in the data cache,” CP15 mcr operations can occur unless locking memory
into the data cache to create SRAM. (See “Data-cache locking” note, below.) The line-allocate
command will place a line in the cache with an unpredictable write-through state. This is
normally not a problem, but violates the workaround for this errata.

This operation is used to clean dirty data out of the data cache. Because the cache is operating
in write-through mode, cleaning the cache is not necessary and can be invalidated.

Data-cache locking: The line-allocate command can be used to allocate lines locked into the data
cache as SRAM. This does not violate this errata’s workaround as those lines are locked in and will
not be replaced. However, at any point where the cache is unlocked, those locked lines are now
available for replacement.

Specification Update 25

Intel® 80321 I/O Processor
Core Errata

At that point, the cache must be loaded up with write-through data using a routine similar to the
routine used at reset. Simply replace the Enable-DCU command, in that routine, with an
Unlock-DCU command and you will have the needed code sequence.

Figure 1. Code for Enabling the Cache and Marking the Whole Cache Write-Through (Sheet 1
of 2)

@#

@# This code enables the data cache and sets all the write-through bits in the

@# data cache. The MMU must already be on.

@#

@# parameters:

@#

@# r0 contains a 32 byte aligned pointer to a 32 kbyte write-through

@# region of memory. This memory will NOT be modified, but it

@# must allow read access.

@#

@# registers:

@#

@# r0 used, not changed

@# r1 modified

@# r2 modified

@# r3 modified

@# r4 modified

@#

@# cpsr (interrupts and CCs) modified

@# DCU enabled

@# data cache invalidated without cleaning

@# disable interrupts

mrs r4,cpsr

orr r1,r4,#0xc0

msr cpsr,r1

@# enable DCU

mcr p15, 0, r1, c7, c10, 4@# drain the dcu

mrc p15, 0, r1, c1, c0, 0

orr r1, r1, #0x4 @# enable dcu

mcr p15, 0, r1, c1, c0, 0

@# cpwait

mrc p15,0,r1,c2,c0,0

mov r1,r1

sub pc,pc,#4

26 Specification Update

Intel® 80321 I/O Processor
Core Errata

Status: Fixed.

@# global invalidate data-cache

mcr p15, 0, r1, c7, c6, 0 @# invalidate dcu

@# fill main cache with write-through lines

mov r1,#1024

mov r3,r0

loop1:

ldr r2,[r3],#32

subs r1,r1,#1

bne loop1

@# global invalidate dcu

@# this will allow us to use the same 32k region in the

@# mini-cache section

mcr p15, 0, r1, c7, c6, 0 @# invalidate dcu

@# fill mini-cache with write-through lines (2kbytes, 64 lines)

@# enable test feature to force all fills to the mini-cache

mov r1,#0x8

mcr p15, 0, r1, c15, c15, 3

mov r1,#64

mov r3,r0

loop2:

ldr r2,[r3],#32

subs r1,r1,#1

bne loop2

@# disable test feature to force all fills to the mini-cache

mov r1,#0x0

mcr p15, 0, r1, c15, c15, 3

@# global invalidate data-cache

mcr p15, 0, r1, c7, c6, 0 @# invalidate dcu

 @## restore cpsr

msr cpsr,r4

Figure 1. Code for Enabling the Cache and Marking the Whole Cache Write-Through (Sheet 2
of 2)

Specification Update 27

Intel® 80321 I/O Processor
Core Errata

19. Accesses to the CP15 ID register with opcode2 > 0b001 returns
unpredictable values

Problem: The ARM Architecture Reference Manual (ARM DDI 0100E) states the following in chapter B-2,
section 2.3:

“If an <opcode2> value corresponding to an unimplemented or reserved ID register is
encountered, the System Control processor returns the value of the main ID register.

ID registers other than the main ID register are defined so that when implemented, their value
cannot be equal to that of the main ID register. Software can therefore determine whether they
exist by reading both the main ID register and the desired register and comparing their values.
If the two values are not equal, the desired register exists.”

The Intel® Xscale™ core does not implement any CP15 ID code registers other than the Main ID
register (opcode2 = 0b000) and the Cache Type register (opcode2 = 0b001). When any of the
unimplemented registers are accessed by software (e.g., mrc p15, 0, r3, c15, c15, 2), the value of
the Main ID register should be returned. Instead, an unpredictable value is returned.

Workaround: No workaround.

Status: NoFix.

20. Disabling and re-enabling the MMU can hang the core or cause it to execute
the wrong code

Problem: When the MMU is disabled, via the CP15 control register (CP15, CR1, opcode_2 = 0, bit 0), after
being enabled, certain timing cases can cause the processor to hang. In addition to this, re-enabling
the MMU after disabling it can cause the processor to fetch and execute code from the wrong
physical address. To avoid these issues, the code sequence below needs to be used whenever
disabling the MMU or re-enabling it afterwards.

Workaround: The following code sequence can be used to disable and/or re-enable the MMU safely. The
alignment of the mcr instruction that disables or re-enables the MMU needs to be controlled
carefully, so that it resides in the first word of an instruction cache line.

@ The following code sequence takes r0 as a parameter. The value of r0 is written

@ to the CP15 control register to either enable or disable the MMU.

mcr p15, 0, r0, c10, c4, 1@ unlock I-TLB

mcr p15, 0, r0, c8, c5, 0@ invalidate I-TLB

mrc p15, 0, r0, c2, c0, 0@ CPWAIT

mov r0, r0

sub pc, pc, #4

b 1f @ branch to aligned code

.align 5

1:

mcr p15, 0, r0, c1, c0, 0@ enable/disable MMU, caches

mrc p15, 0, r0, c2, c0, 0@ CPWAIT

mov r0, r0

sub pc, pc, #4

Status: NoFix.

28 Specification Update

Intel® 80321 I/O Processor
Core Errata

21. Updating the JTAG parallel register requires an extra TCK rising edge
Problem: IEEE 1149.1 states that the effects of updating all parallel JTAG registers should be seen on the

falling edge of TCK in the Update-DR state. The Intel® Xscale™ core parallel JTAG registers
incorrectly require an extra TCK rising edge to make the update visible. Therefore, operations like
hold-reset, JTAG break, and vector traps require either an extra TCK cycle by going to
Run-Test-Idle or by cycling through the state machine again in order to trigger the expected
hardware behavior.

Workaround: When the JTAG interface is polled continuously, this erratum has no effect. When not, an extra
TCK cycle can be caused by going to Run-Test-Idle after writing a parallel JTAG register.

Status: NoFix.

Specification Update 29

Intel® 80321 I/O Processor
Non-Core Errata

Non-Core Errata

1. The SSP TXD Does Not Retain the Value of the Last Bit Transferred
Problem: Both SSP and SPI protocols require that the TXD line retain the value of the last bit transferred. Per

the SSP and SPI protocol: “At the end of transfer, TXD retains the value of the last bit sent (bit 0)
through the next idle period. When the SSP port is disabled or reset, TXD is forced to zero.”
However, TXD only retains the value for approximately one clock cycle and then goes to zero. It is
verified that the SSP remains enabled so it is not due to the SSP being disabled.

Workaround: No workaround.

Status: NoFix.

2. The ATU Returns Invalid Data for the DWORD that Target Aborted from the
MCU when Using 32-Bit Memory, ECC Enabled and in PCI Mode

The external PCI bus requests a read through the ATU to the MCU, starting at the high DWORD.
Remember the MCU is in 32-bit mode. The ATU requests multiple DWORDs since it pre-fetches, but
starts at the high DWORD address. The MCU issues two DWORDs. First the high, followed by the
low and then a Target Abort, so the DWORD count is two. When the ATU returns the data to the
external PCI agent (in PCI Mode ONLY), the logic ONLY disconnects on 64-byte QWORD
boundaries. Recall the ATU DWORD count is at two. When the external PCI device returns to get
data, the ATU returns the first DWORD and SHOULD disconnect, because it does not have enough
data to get to the next QWORD boundary. It does not do this. Instead, it returns invalid data in the
high DWORD of the second QWORD (data from a previous fetch) and the transaction is corrupted.

This issue occurs when all of the following conditions exist in the MCU:

1. 32-bit memory

2. ECC is enabled

3. The PCI bus is in PCI mode

Workaround: Use 64-bit Memory, PCI-X Mode or ECC disabled.

Status: NoFix.

3. PBI Issue When Using 16-bit PBI Transactions in PCI Mode
Problem: Under certain conditions, in bound burst and non-burst reads andwrites from the PCI bus to the PBI

would appear as two writes on the PBI. However, the byte enables are not asserted for the second
write.

This happens when:

1. 80321 is in PCI mode.

2. Another PCI master is attempting to access the PBI behind the 80321.

3. 16-bit mode on PBI.

Workaround: The BE# signals can be used in combination with the PCE#. The BE# prevents the second CE#
from being recognized by the Flash. See the Intel® 80321 Evaluation Board FAB D schematic for a
circuit design to correct this issue.

Status: NoFix.

30 Specification Update

Intel® 80321 I/O Processor
Non-Core Errata

4. All-zero Result Buffer” for the AAU is not Implemented
Problem: The “All-zero result buffer” is a new feature that was going to be added to the 80321 I/O processor.

This feature is currently not implemented and therefore, cannot be used.

Workaround: No workaround. The “All-zero result buffer” is not planned to be implemented.

Status: NoFix.

5. MCU Pointers are Incorrect following a Restoration from a Power Fail
Problem: This issue occurs when:

1. There is a power failure (not during power management or normal shutdown).

2. When power is restored, the internal MCU pointers to the SDRAM may not be correct.

3. When a read from SDRAM (prior to doing a write to SDRAM) is the first MCU operation
done after the power is restored, the MCU pointers may be incorrect and can be reading the
wrong data.

4. However, when a write to SDRAM is the first MCU operation done after the power is restored,
then the pointers are correct and everything works properly.

Workaround: Following restoration of power after a power failure, ensure that the first MCU operation done is a
write to SDRAM.

Status: NoFix.

6. PMU Does Not Account for when the Arbiter Deasserts GNT# One Cycle
before FRAME#

Problem: One of the countable PMU events is bus acquisition latency for the ATU. There is a condition
where the acquire counter is not stopped even though the ATU starts a transaction. When the arbiter
deasserts GNT# in PCI-X mode, the requestor can still start a transaction for one cycle (due to
allowed pipelining). In this situation, the PMU does not properly detect the FRAME# as the ATU
and continues running the counter.

Workaround: No workaround.

Status: NoFix.

Specification Update 31

Intel® 80321 I/O Processor
Non-Core Errata

7. SCKE[1:0] Contention During a Power Failure
Problem: During power failure, the Memory Controller Unit (MCU) issues a sequence of commands to the DDR

memory that puts the memory into self-refresh mode. The data is preserved in the DDR memory as long
as the memory subsystem is powered with a battery source and SCKE[1:0] is held low.

While the memory is in self-refresh mode, the SCKE[1:0] signal remains low. The problem is that
SCKE[1:0] is incorrectly driven high for n M_CLKs, soon after it was driven low. This causes the
DDR memory to exit self-refresh mode, therefore data integrity cannot be guaranteed.

SCKE[0] and SCKE[1] operate independently of each other with SCKE[1] trailing SCKE[0] by
one M_CLK. Here is the sequence of events as described specifically for SCKE[0]:

1. At t=0, SCKE[0] starts out low.

2. At t=A, the first initialization command goes to the MCU by software control and SCKE[0] is
driven to '1'.

3. From t=A to t=B is normal operation.

4. From t=B to t=C a power fail event occurs. The MCU completes its routine at t=C, at which
time SCKE[0] is driven to '0' and the DDR memory is put into self-refresh mode.

5. However, soon after t=C (about 2 - 4 M_CLKs later), the SCKE[0] “glitches” (SCKE[0] is
driven to '1'). The length of time from t=D to t=E varies depending on the ability of the 80321
to issue the internal reset. Simulation has shown the width of the “glitch” to be 0 to
2 M_CLKs. However, this may vary with internal bus activity and the ability of the 80321 to
service the reset when the power fail sequence is done. This “glitch” on the SCKE[0] signal
causes the DDR memory to exit self-refresh mode.

6. At t=E, the falling edge of the SCKE[1:0] “glitch” is synchronous with the assertion of M_RST#.

Workaround: See the workaround for Item 9.

Status: Fixed.

8. Core Write of ECC Error Not Setting Bit #23/#24 Correctly in ECAR
Problem: In the MCU ECAR MMRs (0xFFFF E540 and 0xFFFF E544), bit 10 of the column address is incorrectly

mapped to bit 23/24 (32-bit/64-bit mode, respectively) of the IB address. Recall that column address bit 10
is RESERVED for the AUTO-PRECHARGE command during a read/write. Column address bit 9 should
have been routed to this location, not column address bit 10. The effect is bit 23 in 32-bit mode, or bit 24 in
64-bit mode, is incorrect (“stuck” at 0) – the actual value of the bit cannot be known.

Workaround: A stuck bit means that the customer does not know when the bit is a 1 or 0. The workaround requires a
scrub of both locations; once assuming the stuck bit is at a 1 and a second time assuming the bit is at a 0.

Status: Fixed.

SCKE[1:0]

SCE[1:0]#

t=0 t=Bt=A t=C t=Et=Dtime

glitch

self-refresh

32 Specification Update

Intel® 80321 I/O Processor
Non-Core Errata

9. Improper Power Fail Sequence During a Power Failure
Problem: During power fail, the Memory Controller Unit (MCU) issues a sequence of commands to the

DDR memory that issues an auto-refresh command followed by a self-refresh command that puts
the memory into self-refresh mode. The data is preserved in the DDR memory as long as the
memory subsystem is powered with a battery source and SCKE[1:0] is held low.

The minimum clock count between the auto-refresh command and the self-refresh command is
eight clock cycles, to allow enough time for the DDR state machine to complete the auto-refresh
command in the power fail sequence. The problem is that the number of clock cycles between these
two commands is only four clock cycles. Therefore, the self-refresh command is not recognized by
the DDR state machine, because the DDR state machine is still executing the auto-refresh
command. Since the self-refresh command is missed by the DDR state machine, the DDR never
enters self-refresh mode. Therefore, DDR memory data integrity cannot be guaranteed.

Workaround: Convert the auto-refresh command, during the power fail sequence, to a self-refresh command and
to hold the SCKE[1:0] signal low until the POR# pin is deasserted. The circuit for this workaround
is shown below. This circuit also provides the workaround for Item 7. PLD equations for this
circuit are available upon request.

CKE0

CS0

RAS

CAS

PRST_N

CS1

CKE1

NCKE0

NCKE1

Specification Update 33

Intel® 80321 I/O Processor
Non-Core Errata

Status: Fixed.

Figure 2. Power Fail State Machine

Figure 3. Power Failure Sequence

B0160-01

P_RST#
transitions

to 0

Issue
precharge-all
command to

SDRAM

Gracefully
terminate current

SDRAM
activity

Power failure
state machine

idle state

Issue
self-refresh
command to

SDRAM

MCU signals the
completion of the

power failure sequence
to the CRU

CRU requests
power failure

sequence

B0168-01

M_CK

P_RST#

CE[1]#

RAS#

0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 214 5

CAS#

WE#

MA[10]

CKE[0]

CKE[1]

Reset due to
Power Failure

Wait for 13 to 15 clocks

CE[0]#

Precharge-All Self-Refresh

Trp

34 Specification Update

Intel® 80321 I/O Processor
Non-Core Errata

10. PLL Unable to Lock at Reset
Problem: The combination of FRAME#, IRDY#, DEVSEL#, STOP# and TRDY# signals, provide the

PCI-X initialization pattern at the rising edge of P_RST#, per Table 6-2 in the PCI-X Addendum to
the PCI Local Bus Specification, Rev. 1.0a. The PCI-X initialization pattern needs to have been in
a known state for a minimum of 10 clock cycles, before the rising edge of P_RST#, to ensure the
stability of the PCI-X initialization pattern.

The PCI-X initialization pattern frequency must always match the P_CLK frequency, before the
rising edge of P_RST#, to ensure proper PLL lock. The problem is that the PCI-X initialization
pattern frequency does not always match the frequency of P_CLK prior to the rising edge of
P_RST#. Since there is a time that the PCI-X initialization pattern frequency does not match the
P_CLK frequency before the rising edge of P_RST#, the PLL is put into an unknown state until it
receives a pulse from the POR# pin, before the rising edge of P_RST#.

Workaround: Pulse the POR# signal once the PCI-X initialization pattern frequency matches the P_CLK, before the
rising edge of P_RST#. An example circuit for this workaround is shown in the following diagram.
PLD equations for this circuit are available upon request. The function of this circuit is to pulse the
POR# pin when there is any change in the PCI-X initialization pattern, prior to the deassertion of
P_RST#. A pulse width of approximately 200 ns is required. This allows the PLL to reset and latch the
correct PCI-X initialization pattern to ensure proper PLL operation upon coming out of Reset.

When entering PCI-X mode, the M66EN signal needs to be held high from power-up until the
rising edge of P_RST#.

Status: Fixed.

DEVSEL_N

STOP_N

TRDY_N

M66EN

P_RST_N

PWRDLY

POR_N

Delay Chains may not
be implemented as
shown

Delay Chains may not
be implemented as
shown

Specification Update 35

Intel® 80321 I/O Processor
Non-Core Errata

11. Lost Data During Bursts of Large Number of Partials with 32-bit ECC Memory
Problem: When the MCU operates in 32-bit mode only and it is hit by enough partials to cause the input

posted write buffer to fill (in 32-bit mode it holds 512 bytes), the MCU has conditions where it
does NOT disconnect on the IB (internal bus) before overrunning.

When the buffer overruns, the MCU momentarily thinks it is empty, allowing the refresh to occur,
but also causing all data to be lost for the rest of the burst. The ATU continues to throw data at the
MCU, but this data is lost.

This is strictly a 32-bit memory ECC on mode issue, as this is the only way to fill the entire buffer
since all buffers on the IB are 1 K in size (except the MCU when operating in 32-bit DDR mode).
The DMA, AAU, and core cannot cause the situation in 32-bit mode because they only issue up to
two partials in their burst before disconnecting. In these situations, the MCU will drain enough data
to prevent buffer overrun.

Workaround: Use 64-bit memory or ECC disabled.

Status: NoFix.

12. P_RST# to PCI-X Initialization Pattern Hold Time (Tprh)
Problem: The combination of FRAME#, IRDY#, DEVSEL#, STOP# and TRDY# signals, provide the

PCI-X initialization pattern at the rising edge of P_RST#, per Table 6-2 in the PCI-X Addendum to
the PCI Local Bus Specification, Rev. 1.0a.

There is a hold time requirement for the PCI-X initialization pattern, following the rising edge of
P_RST#, per Table 9-5 in the PCI-X Addendum to the PCI Local Bus Specification, Rev. 1.0a,
P_RST# to PCI-X initialization pattern hold time, Tprh = 0-50 ns. This hold time specification is
also listed in Table 21 of the Intel® 80321 I/O Processor Datasheet as TIH3.

There are three signals in the PCI-X initialization pattern that are in violation of the Tprh timing
parameter; DEVSEL#, STOP# and TRDY#. The actual minimum hold time for these signals is in
the range of 100-500 ps across various temperatures and voltages, versus a minimum hold time
specification of 0ns. The implication of this timing violation is, that some systems may not get
initialized to the proper PCI-X bus speed and PCI-X mode at the rising edge of P_RST#.

Workaround: Ensure the P_RST# to PCI-X initialization pattern minimum hold time is 1 ns for the DEVSEL#,
STOP# and TRDY# signals.

Status: Fixed.

36 Specification Update

Intel® 80321 I/O Processor
Non-Core Errata

13. The MTTR1 (Core Multi-Transaction Timer) is not operating due to improper
behavior of the core internal bus request signal (REQ#)

Problem: The MTTR1 (Core Multi-Transaction Timer) is not operating due to improper behavior of the core
internal bus request signal (REQ#). All agents on the bus, except the core, maintain their assertion
on REQ# signals upon receiving a retry. When the MCU is busy this means that the core must wait
for other agents to complete their transactions before the core gains access to memory. Due to the
fact that internal bus agents initiate larger transactions than the core, this issue results in an
unbalanced access to the internal bus biased to these other agents (DMA, AAU, ATU, etc.). When
operational, the MTTR1 is intended to correct this balance. See Section 11.2.2 of the Intel® 80321
I/O Processor Developer’s Manual for more information on the MTTR1 function.

Implication: In the case of the MCU internal bus target, this problem is compounded by the many internal bus
retries that are issued by the MCU when under heavily loaded conditions. The result is that the
internal bus arbiter removes the core access to the bus when the core deasserts REQ#. This
condition may result in the core being locked out of accessing the MCU until other internal bus
agents have completed their transaction(s) (i.e., when the DMA is in the process of a large block
transfer of data, the core may have to wait until the DMA transaction is completed before it would
have access to the internal bus to initiate its transaction).

Workaround: No workaround.

Status: NoFix.

14. The MCU supports a page size of 2 Kbytes for 64-bit mode
Problem: The Intel® 80321 I/O Processor Developer’s Manual (Section 7.1.1 - Table 136 and Section

7.2.2.3) states that the MCU supports a page size of 4 Kbytes for 64-bit mode and 2 Kbytes for
32-bit mode. This is in error.

Implication: The MCU supports a page size of 2 Kbytes for 64-bit mode and for 32-bit mode.

Workaround: No workaround.

Status: NoFix.

Specification Update 37

Intel® 80321 I/O Processor
Non-Core Errata

15. A logic error in the Memory Controller Unit (MCU) incorrectly reports an
ECC Error on memory writes. This error does not corrupt memory contents
or data. There are two different conditions that exacerbate the issue.

PART 1: Partial DDR Memory ECC Initialization at Startup

Problem: Data returned from a read to DDR SDRAM is registered at the pad interface as it enters the MCU
and is then latched into the MCU Read FIFO. Data at the head of the read FIFO is connected to
ECC logic that indicates any data ECC errors. During a DDR SDRAM Read, the MCU Read State
Machine (MCU_RSM), by design, reads beyond the targeted area (i.e., the MCU_RSM
“over-runs”). The MCU_RSM returns only the data requested to the Mastering Device, but the data
that was loaded into the head of the MCU Read FIFO, as a result of the overrun, is evaluated by the
ECC logic. Should the over-run data contain an ECC error, an internal flag is set in the MCU, that
indicates the MCU Read FIFO is currently “sitting” on an ECC Error.

Since the data sitting at the head of the MCU Read FIFO, at the end of a DDR SDRAM read is not
returned to Mastering Device, the MCU MMR logic does not pay attention to any ECC flags set at
the end of the read. However, when the next transaction to the MCU immediately following the
read is a DDR SDRAM write, and the data at the head of the MCU Read FIFO contains an ECC
error, the MCU erroneously loads the ECC MMRs, based upon the data sitting at the MCU Read
FIFO from the previous read. The MCU reports the error from the read during the subsequent
write. Thus, when the ECC Reporting MMRs are loaded (ECAR), they then contain the address of
the write and, the syndrome from the read data and the reported or logged ECC address is incorrect.

It is important to note that all of the ECC circuitry that corrects and reports ECC errors during reads
and writes is fully intact and operational. The net effect of this logic error is, that an ECC event is
reported for an area of memory the Mastering Device (during the read) did not intend on reading
(recall, this error is only triggered because of the MCU_RSM over-run). This error can only be
stimulated by a DDR SDRAM write that immediately follows a DDR SDRAM read, where the
data at the head of the MCU Read FIFO has an ECC error (this is very unlikely to happen, except
in a memory system that has not fully initialized DDR SDRAM).

Workaround: Part 1: There are two items in the workaround guidance for this error. Item 1 is how to handle an
ECC event reported by the MCU. Item 2 refers to how to minimize the occurrence for a partially
scrubbed (“partially initialized”) memory system.

Item 1: The guidance in servicing an ECC event for a fully scrubbed DDR SDRAM, is to service
each ECC event that is reported by the MCU, even though there exists a very small chance
that the ECC event that caused the MCU to report, was not in an area of memory that was
intended on being read (in which case the address in the ECAR would be incorrect).

Item 2: For a partially scrubbed memory system, the likelihood of this bug occurring increases
greatly for the cases where the over-run of the MCU_RSM goes into un-initialized DDR
SDRAM space (this can occur because of the non-linearity of the Internal Bus to DDR
SDRAM address translation).

When performing a partial ECC Memory Initialization, the 80321 requires additional memory
regions to be initialized. The following additional rules apply:

1. The useable space must be a multiple of 4 Kbyte blocks.

2. All column addresses associated with each used 4 Kbyte block requires the first 256 bytes of
the matching 4 Kbyte offset block to also be initialized. The offsets for each of the following
examples are derived from the column addressing scheme for the 80321 DDR SDRAM
Addressing. Refer to section 7.2.2.2, “DDR SDRAM Addressing”, in the Intel® 80321 I/O
Processor Developer’s Manual, for an explanation of 80321 column addressing.

38 Specification Update

Intel® 80321 I/O Processor
Non-Core Errata

Example 1. 4 Kbyte Initialization Required for 128 Mbyte DDR Memory (Figure 1)

When the program only uses the first 4 Kbyte block, then after initializing the first 4 Kbytes, the
first 256 bytes at an offset address of 16 Mbytes must also be initialized.

When using the first 16 Mbytes of memory, the over-run occurs after every 4 Kbytes of memory
space has been addressed. From section 7.2.2.2 of the Intel® 80321 I/O Processor Developer’s
Manual, I_AD[24] of the column address gets set, which results in a 16 Mbyte offset.

 ↑
Gets set to ‘1’ on the over-run

Example 2. 12 Kbyte Initialization Required at 20 Mbyte Base Address for 128 Mbyte DDR
Memory (Figure 1)

When more than one 4 Kbyte block is used, every 4 Kbyte block of initialized memory has to
perform the same 256 byte initialization, at an offset address of 48 Mbytes from each 4 Kbyte block.

When using memory in the 16 Mbyte - 64 Mbyte range, I_AD[24] is already set and the over-run
occurs after every 4 Kbytes of memory space has been addressed, and then I_AD[26] of the
column address gets set, which results in a 48 Mbyte offset (64 Mbyte – 16 Mbyte).

 ↑
Gets set to ‘1’ on the over-run

Example 3. 4 Kbyte Initialization Required at 112 Mbyte Base Address for 128 Mbyte DDR
Memory (Figure 1)

In this example, I_AD[24] and I_AD[26] are set to begin with and then the next over-run clears
these two bits, which results in essentially a 16 Mbyte offset or an offset to the beginning of
memory, since the 16 Mbyte offset is higher than the total 128 Mbyte address space. The over-run
requires initializing the first 256 bytes starting at address 0.

When using memory above 64 Mbytes, I_AD[26] is already set and the over-run occurs after every
4 Kbytes of memory space has been addressed, and then I_AD[24] of the column address gets set.
Therefore, I_AD[24] and I_AD[26] are both set, which results in a 16 Mbyte offset (80 Mbyte –
64 Mbyte).

 ↑
Both get ‘cleared’ on the over-run

MA[12:0] 12 11 10 9 8 7 6 5 4 3 2 1 0

Col - I_AD[26] - I_AD[24] I_AD[11] I_AD[10] I_AD[9] I_AD[8] I_AD[7] I_AD[6] I_AD[5] I_AD[4] I_AD[3]

MA[12:0] 12 11 10 9 8 7 6 5 4 3 2 1 0

Col - I_AD[26] - I_AD[24] I_AD[11] I_AD[10] I_AD[9] I_AD[8] I_AD[7] I_AD[6] I_AD[5] I_AD[4] I_AD[3]

MA[12:0] 12 11 10 9 8 7 6 5 4 3 2 1 0

Col - I_AD[26] - I_AD[24] I_AD[11] I_AD[10] I_AD[9] I_AD[8] I_AD[7] I_AD[6] I_AD[5] I_AD[4] I_AD[3]

Specification Update 39

Intel® 80321 I/O Processor
Non-Core Errata

Figure 1. Partial Memory Initialization Examples

Examples of Partial Initialization of Different Memory Regions of a 128
Mbyte Memory

4K

112M

0 0

16M

68M

16M + 4K

68M + 4K

20M

112M + 4K
16M offset from 112M base
over-runs to location 0

Partial initialization regions Additional 256 byte init. regions
1

20M + 4K

20M + 8K

2

68M + 8K

Initialize first 256 bytes

Initialize first 256 bytes

Initialize first 256 bytes

Initialize first 256 bytes

•
•
•
•
•

3

20M + 12K

Figure 1

68M + 12K
Initialize first 256 bytes

4K

•
•
•
•
•

48M offsets from
20M base

16M offsets from
0 base

40 Specification Update

Intel® 80321 I/O Processor
Non-Core Errata

PART 2: Under certain conditions, a location in the MCU Read FIFO can be written to and
read from at the same time which may result in the ELOG register being updated
incorrectly

Background:The MCU can be partitioned into two blocks; a read block and a write block.

The read block has a sub-block that controls and records the ECC status. When a read
is requested, the MCU continues to fetch data after all requested data has been returned
to the requesting device. This phenomenon occurs due to an asynchronous clock
boundary between the memory bus and the internal bus to support DDR memory.
Hence, for a finite period of time, the ECC status logic is receiving information on data
that is not returned to the requestor. This is documented in the Intel® 80321 I/O
Processor Developer’s Manual, as normal behavior.

Problem: When a read transaction is completing and a write transaction is requested, an ECC error may be
erroneously flagged during the over-run period. The ECC error can be caused either by a true ECC
error or due to the skew between the data strobe (DQS) and the internal ECC comparison logic.
This issue is associated with the DQS skew.

In normal operation, data into the I/O processor is passed into the MCU Read FIFO and allowed to
settle for several cycles before it is read. At the end of a read, the MCU Read FIFO input pointer is
cleared so that any over-run data is placed into Address 0 of the FIFO. The Read MCU FIFO
output pointer is not cleared until the transaction is completed. When the output pointer ever points
at Address 0, read data does not get the normal “several” cycles to stabilize. Thus, a one-cycle path
is created directly from the input pad to the ECC calculation and status logic. This path was
designed to be one-cycle. However, since the DQS is allowed to vary per DDR specification, the
actual path can be constrained to less than one-cycle, further limiting the time the logic has to
process the incoming data (i.e., less than one cycle). When DQS moves far enough, erroneous
results are presented at the ELOG register.

For read transactions, additional logic prevents the ELOG registers from updating.

Write transactions are retried until the entire MCU has completed the read transaction. However,
some logic is enabled during the retried cycle. In this condition, a 1-2 cycle hole exists and the
ELOG register can be updated incorrectly.

Workaround: Part 2: None.

Note: Although there is a workaround for Part 1, there is not one for Part 2. Therefore, there is not a
complete workaround for this erratum.

Status: Fixed.

Specification Update 41

Intel® 80321 I/O Processor
Non-Core Errata

16. Intel® 80321 I/O Processor/PCI-X Bridge Unexpected Split Completion Error
Problem: In PCI-X mode, when the 80321 does a Memory Block Read, under the following three conditions,

the 80321 sets the Unexpected Split Completion Error bit (PCIXSR bit19, DMA-CSR bit2):

1. The errata condition requires Byte Count Modify bit (BCM) of the Split Completion
Transaction Attribute Phase to be set.
The Completer sets BCM when the byte count is less than the original request. The Completer
may choose to do this when a short data burst would not allow the Requester enough time to
recognize a disconnect on an Allowable Disconnect Boundary (ADB). When the data length
size is 256 bytes or greater, the Completer does not need to use BCM because the Requester
has time to recognize a disconnect. However, some Completers may still choose to split the
transaction using BCM.

2. The Requested Data address range must cross over a 128 byte ADB and the Completer
decides to divide the completion transaction using BCM.
Not all ADB (naturally aligned 128-byte boundary) address ranges cause this condition
because the 80321 divides certain requests into two ADB aligned data requests. The
Completer is not allowed to set the BCM on ADB aligned requests. One such condition occurs
when the 80321 Maximum Memory Read Byte Count is set to 512 (PCIXCMD bits [3:2]). For
this case, the 80321 will divide the request into two ADB aligned requests whenever the ADB
crossover address is evenly divisible by 512. When the 80321 Maximum Read Byte Count is
set to 1K or greater, then the 80321 will divide requests that cross over 1K address boundaries.
Completers are not required to divide the completion transaction into two transactions. They
can treat it as an immediate transaction. The address boundaries where most Completers
would make divisions are the same boundaries where the 80321 already divides the Request
into two ADB aligned requests.

3. The bits AD[11:8] of the Split Completion Transaction Attribute Phase must have at least
one bit set.
When these four bits are zero, then the errata will not occur. These bits are defined as Completer
Function Number, [10:8], and the low order bit of the Completer Device Number, [15:11].

Workaround: Assumption: The 80321 is in control of all data memory read requests. When a device driver not
residing on the 321 were to build and execute a request by reading the 80321 memory and registers,
then that driver would have to be changed also. This may not prove practical.

When a Data Read Request from the 80321 would cause the errata condition, the fix to the
errata condition is:

a. Divide the request into two aligned data requests. When the original request begins at
Adr0 and has a length of BC0, then the new requests would use:

Adr1 = Adr0 BC1 = 256 - BC0
Adr2 = Adr1 + BC1 BC2 = BC0 - BC1

The workaround could be applied in one of two ways:

b. Each request could be checked before being initiated and then adjusted.
This approach has the advantage of never allowing the error condition to occur, but has
the disadvantage of extra overhead in the main stream code and the code will not be
required with future stepped components.

c. The fix could be applied only after an error condition has been detected.
This approach has the disadvantage of lost time because of one transfer would be useless
and has the advantages that the error recover code may already reside in a single location
and the code will not require changing for optimal performance when future stepped
components are available.

Status: Fixed.

42 Specification Update

Intel® 80321 I/O Processor
Non-Core Errata

17. Vih Minimum Input High Voltage (Vih) level for the PCI pins
Problem: The Vih Minimum Input High Voltage (Vih) level for the PCI pins is being tested at 100 mV higher

than the minimum Vih level specified in Table 4-3 (DC Specifications for 3.3 V Signaling) of the
PCI Local Bus Specification, Revision 2.2. This Vih test limit only applies to cold temperature
testing specified to be 0°C.

The PCI Local Bus Specification, Revision 2.2 specifies the minimum Vih level to be 0.5 Vcc. The
Vcc specification is 3.3 V +/- 10% with the minimum Vcc specification (or minimum power level)
being tested at 3.0 V. The minimum Vih level per the PCI Specification should therefore be
0.5(3.0 V) or 1.5 V. The 80321 is unable to meet this minimum Vih level at cold temperature
testing specified to be 0°C.

Implication: During cold temperature manufacturing testing, 80321 silicon is subjected to a 0°C environment
for an extended period of time. During this time the Vih test is implemented and the junction
temperature is at or near the test temperature of 0°C. This junction temperature is considered to be
far less than the temperature the 80321 silicon would be subjected to in a customer application
under operating conditions.

Below is an example calculation showing the expected junction temperature for a customer
application operating in an ambient temperature of 0°C:

Tj = junctions temperature, Ta = ambient temperature, qja = junction to ambient thermal
resistance of the package, P = power at minimum Vcc
Tj = Ta + (qja * P) where Ta = 0C, qja = 13.94 C/W assuming 200lfm airflow (see Table 11 of
the Intel® 80321 I/O Processor Datasheet), P = 3.0 W
Tj = 0 + (13.94 C/W * 3.0 C)

Tj = 41.82 C

Workaround: The minimum Vih level for the PCI pins will be tested at the PCI Local Bus Specification,
Revision 2.2 specification (0.5 Vcc) plus an additional 100 mV that equates to 1.6 V during cold
temperature manufacturing testing.

Status: NoFix.

Specification Update 43

Intel® 80321 I/O Processor
Specification Changes

Specification Changes

1. DDR VCC and DDR VREF minimum specifications need to be changed on the
A-0 and B-0/B-1 steppings

Issue: DDR VCC and DDR VREF minimum specifications need to be changed in Table 17 of the Intel®
80321 I/O Processor Advance Information Datasheet (273518-001) for the A-0 and
B-0/B-1steppings.

The DDR voltages specifications from Table 17, in the referenced Intel® 80321 I/O Processor
Advance Information Datasheet, are shown in Table 1.

The new DDR voltages specifications — that supersede the values listed in Table 17 of the
referenced datasheet — are shown in Table 2.

2. DDR SDRAM signal timing change, TVA3
Issue: The DDR SDRAM Address and Control write output — valid after CK (TVA3) minimum

specification — needs to be changed in Table 22 of the Intel® 80321 I/O Processor Datasheet
(273518-001) for all steppings.

The old TVA3 timing specification — in Table 22 of the referenced Intel® 80321 I/O Processor
Datasheet — is shown in Table 3.

The new TVA3 timing specification — that supercedes the value listed in Table 22 of the referenced
datasheet — is shown in Table 4.

Table 1. Published DDR VCC and DDR VREF Values

Symbol Parameter Min Max Units

VCC25 2.5V DDR Supply Voltage 2.3 2.7 V

VREF Memory I/O Reference Voltage VCC25/2 – 0.05 VCC25/2 + 0.05 V

Table 2. Revised DDR VCC and DDR VREF Values

Symbol Parameter Min Max Units

VCC25 2.5V DDR Supply Voltage 2.375 2.7 V

VREF Memory I/O Reference Voltage VCC25/2 – 0.013 VCC25/2 + 0.05 V

Table 3. Published TVA3 Value

Symbol Parameter Min Max Units

TAV3
Address and Control write output
valid after CK 3.5 ns

Table 4. Revised TVA3 Values

Symbol Parameter Min Max Units

TAV3
Address and Control write output
valid after CK 3.3 ns

44 Specification Update

Intel® 80321 I/O Processor
Specification Changes

3. P_BMI (AE23) added to B-0/B-1 Steppings

The P_BMI (AE23) signal has been added to the Intel® 80321 I/O processor (B-0/B-1 Stepping).
This signal replaces, using an external GPIO pin for Initialization Device Select (IDSEL) control of
an I/O device during host configuration cycles.

Issue: I/O Device IDSEL control using the new P_BMI signal:

When the system boots after reset, the host BIOS initiates a PCI bus scan to find all the PCI
components installed in the system. The system uses the IDSEL signal to address the I/O device when
assigning the necessary resources. Without special control over the IDSEL signal during configuration
cycles, the host and the 80321 may both attempt to configure the same I/O device. By taking control of
IDSEL, the 80321 can execute configuration cycles to the slave I/O device (SCSI) and properly hide
the slave I/O device from the host and operating system initiated configuration cycles.

The 80321 has eight integrated General Purpose Input Output (GPIO) pins, referred to as GPIO[7:0].
These pins, along with the new PCI-X Bus Master Indicator (P_BMI) signal, can be used to control the
IDSEL to the I/O device. External circuitry is no longer required other than a simple switch. The output
function of the P_BMI signal is controlled by the GPIO Output Data Register (GPOD), Bit 0 as shown
in Table 1. The P_BMI signal is always driven and defaults to driving low at power up.

The IDSEL signal is used as a chip select during configuration cycles initiated by the BIOS, operating
system or 80321. The GPOD[0] can be driven low in firmware, thereby disabling the P_BMI signal
and hiding the host I/O device from the system, by turning off its IDSEL. When the 80321 intends to
perform configuration cycles in the PCI bus segment of the I/O device, the P_BMI signal should be
asserted high by driving the GPOD[0] high. The affect of these two operations is, that the I/O device
is initialized and controlled by the 80321. More care must be taken with the gate chosen to control
IDSEL, since most host bridge controllers do not use PCI address stepping. With IDSEL being a
synchronous signal, with respect to CLK, the switch used must be a sub nanosecond propagation
delay device (e.g., Pericom PI5C3303). In Figure 2, the P_BMI signal is used to control a
mux/demux switch that is used to enable/disable IDSEL to the I/O device.

Table 1. GPIO Output Data Register (address = FFFF E7CCh)

Bit Default Description

0 0 This bit value is driven on the P_BMI signal when the 80321 has been given control
of the bus (granted GNT#) by the bus arbiter.

Specification Update 45

Intel® 80321 I/O Processor
Specification Changes

Note: The host BIOS does not require any modifications to accommodate this implementation. All the
responsibility for I/O device configuration and resource falls to the 80321 firmware.

Figure 2. IOP321 P_BMI Signal Implementation for 80321 B-0/B-1 Stepping

I/O Controller
GPOD Register:

Bit 0

P_BMI Control
Logic

ID
SE

L

PCI-X Bus AD[64:0]

Intel ® 80321
I/O Processor

(B-0/B-1 Stepping)

P_BMI Signal (AE23)

E
na

bl
e

P
_B

M
I

G
N

T
#

A
D

{1
1+

x]
R1

_

46 Specification Update

Intel® 80321 I/O Processor
Specification Clarifications

Specification Clarifications

1. The Intel® 80321 I/O processor is compliant with the PCI Local Bus
Specification, Revision 2.2 but it is not compliant with PCI Local Bus
Specification, Revision 2.3

Issue: The Intel® 80321 I/O processor was designed to be compliant with the PCI-X Addendum to the
PCI Local Bus Specification, Revision 1.0a, that calls out compliance with the PCI Local Bus
Specification, Revision 2.2. Since the release of the 80321, the PCI Special Interest Group has
released a new specification revision, PCI Local Bus Specification, Revision 2.3.

Status: NoFix. The current stepping of the 80321 is not compliant with PCI Local Bus Specification,
Revision 2.3 and there are no plans to make it compliant with the PCI Local Bus Specification,
Revision 2.3 in future steppings.

2. Modifications to the Hot-Debug procedure are necessary for the Intel®
80321 I/O processor when flat memory mapping is not used (Virtual
Address = Physical Address)

Issue: The Intel® 80321 I/O processor can implement Hot Debug as stated in the application note
“Hot-Debug for Intel® Xscale™ Core Debug:
“http://developer.intel.com/design/iio/applnots/273539.htm”.

However, there can be a conflict for resources when flat memory mapping is not used (Virtual
Address = Physical Address).

This is primarily due to the debug implementation within the core that causes the Instruction
Memory Management Unit to be disabled when in this Special Debug State.

Status: NoFix. The following are suggested steps to overcome this conflict within a debug environment.

1. Instrument the application code to add an infinite loop before any memory is remapped
(physically or virtually).

2. Hook up the JTAG Debugger that supports Hot Debug.

3. Set PC to address passed the loop.

4. The code can now run without the need to reset the application environment.

Note: Once a debug session has ended, you must follow the above steps over again in order to regain
debug control.

3. Removed. Does not apply to the Intel® 80321 I/O processor.

http://developer.intel.com/design/iio/applnots/273539.htm

Specification Update 47

Intel® 80321 I/O Processor
Specification Clarifications

4. BAR0 Configuration When Using the Messaging Unit (MU)
Issue: When the BAR0 is configured as a prefetchable register by default and a burst request crosses into

or through the range of offsets 40h to 4Ch (i.e., this includes the Circular Queues), the transaction
is signaled a Target Abort immediately on the PCI/PCI-X bus, which may be read as an NMI by the
host BIOS.

Status: Doc. Do not configure the BAR0 as prefetchable when using BAR0 and the non-prefetchable MU
registers (i.e., range of offsets 40h to 4Ch). Configure the BAR0 as non-prefetchable, IABAR0[3],
when accessing these non-prefetchable MU registers. Since non-prefetchable memory windows
cannot be placed above the 4 Gbyte address boundary, when the Prefetchable Indicator bit,
IABAR0[3], is cleared prior to host configuration, also clear the Type Indicator bits, IABAR0[2:1]
for 32-bit addressability. When the non-prefetchable MU registers are in use, those memory
accesses that require prefetchable operations, use the BAR2 configured as prefetchable.

5. Reading Unpopulated SDRAM Memory Banks
Issue: A hang condition can occur with the 80321 when firmware does a read to unpopulated SDRAM

memory and DQS0 is sampled low. In this scenario, putting a load (i.e., scope probe), on the DQS0
signal could trigger DQS0 to be sampled low, which the MCU interprets as the pre-amble and waits
for DQS0 to go high. Since the read is to unpopulated memory, nothing drives the DQS0 signal
high, therefore the 80321 appears to hang.

Status: Doc. Do not attempt to read from non-existent memory. In some applications, firmware performs a
memory scan, typically during boot-up, to determine the total amount o SDRAM installed. Instead,
either use the Serial Presence Detect (SPD) mechanism or have it hard coded in firmware. SPD is
used to read, via I2C, from a non-volatile storage device. This device contains data programmed by
the DIMM manufacturer, that identifies the module type, various SDRAM organizations and
timing parameters. Using SPD or hard coded firmware eliminates the need to do SDRAM sizing in
the firmware.

6. 32-bit Writes-to-Unaligned 64-bit Addresses, are Promoted to 64-bit Aligned
Writes

Issue: In 80321-based applications that run the PCI bus segment in 32-bit PCI Mode or 64-bit PCI Mode
with 32-bit targets, write transactions that are on unaligned 64-bit addresses are promoted to 64-bit
aligned writes. The first half of the 64-bit write is on a 64-bit aligned address and has the BE#
signals disabled. Therefore, the write is invalid. The second half on the 64-bit write is a valid write
with the BE# enabled and the write is to the intended 32-bit address.

Per the PCI Local Bus Specification, Revision 2.2, the PCI compliant devices should ignore the
first half of the 64-bit write due to the BE# signals being disabled.

Status: For devices that support using the I/O memory window, the 64-bit write does not occur when using
the 80321 ATU I/O Window and the only expected 32-bit write occurs. See section 3.2.2.2 of the
Intel® 80321 I/O Processor Developer’s Manual for details.

For memory mapped devices, the only option is to run in PCI-X mode, where the byte count and
starting address are consistent with the actual number of bytes to be written (i.e., 4). This is so
because, when a 64-bit PCI-X request gets downshifted, the requester can use the starting
address/byte count to recognize that the write request does not cross a DWORD address boundary
and only perform a single 32-bit wide data cycle.

48 Specification Update

Intel® 80321 I/O Processor
Specification Clarifications

7. In-order Delivery not guaranteed for data blocks described by a single DMA
descriptor

Issue: In-order delivery is not guaranteed for data blocks described by a single DMA descriptor that
crosses a 1 KB boundary. This may result in out of order execution of the DMA transfer. When
multiple DMA descriptors are used the ordering is maintained with respect to the blocks described
by each descriptor. When ordering is important, the ordering needs to be maintained by splitting
the relevant pieces of data into multiple DMA descriptors.

Example A 100 byte DMA transfer described by a single descriptor with a source address of
0x3ff8. Since each DMA channel has two 1 KB buffers, the DMA unit breaks this
transaction at the 1 KB boundary. Therefore, the first buffer might fetch the 8 bytes
from 0x3ff8-0x3fff and the second buffer might fetch the remaining 92 byes from
0x4000-0x405C. Both buffers have the ability to access the internal bus, without
preference (i.e., either buffer may gain access first). Therefore, it is possible the
92 bytes of data after the 1 KB boundary could be transferred to the destination
before the first 8 bytes. However, the transaction is completed and all data has been
copied to the correct address when the descriptor completes (i.e., descriptors are
not completed out of order).

Status: When a data delivery sequence is required, descriptors should be used to ensure sequenced arrival
(e.g., in the example above), break the data into blocks then use multiple descriptors linked in the
correct order to ensure sequential data delivery.

Specification Update 49

Intel® 80321 I/O Processor
Documentation Changes

Documentation Changes

1. Table 4 Page 18 second row has incorrect data
Problem: The RCVENO# description of Table 4 states:

“RECEIVE ENABLE OUT must be connected to RCVENI# of the 80321and be trace length
matched to DQ[63:0].”

Workaround: Change the description to the following:
“RECEIVE ENABLE OUT - this pin must be connected to RCVENI# of the 80321 and be Trace
Length Matched = Average Memory Clock Length + Average DQS Length.”

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

2. Table 9 (Sheet 3 of 5), page 31 and Table 10 (Sheet 5 of 5), page 38 have
incorrect data

Problem: In the Third Signal column, Signal WR# (Ball P23) is incorrect.

Workaround: Change WR# to W/R#.

Affected Docs: Intel® 80321 I/O Processor Datasheet.

3. Table 10 (Sheet 2 of 5), page 35 has incorrect data
Problem: In the Third Signal column, Signal P_AD4 (Ball AC7) is incorrect.

Workaround: Change P_AD4 to P_CLK.

Affected Docs: Intel® 80321 I/O Processor Datasheet.

4. Section 6.2.2 on page 37 has incorrect data
Problem: The last sentence in the first paragraph states “With conventional PCI mode, a low on P_M66EN

determines the PCI bus is at 66 MHz.”

Workaround: Change the last sentence in the first paragraph to the following: “With conventional PCI mode, a
low on P_M66EN determines the PCI bus is at 33 MHz.”

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

50 Specification Update

Intel® 80321 I/O Processor
Documentation Changes

5. Figure 14 on page 40 has missing text
Problem: The second note shows “...set __CLKs...”. It should read “...set P_CLKs...”.

Workaround: Replace Figure 14 with the following:

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

6. Table 18, page 61 has missing data and incorrect data
Problem: Table 18 is missing data and lists incorrect data.

Workaround: Replace Table 18 with the following:

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

Symbol Parameter Minimum Maximum Units

VCC25 2.5 V Supply Voltage for DDR (also referenced as VDD25) 2.3 2.7 V

VDDQ I/O Supply Voltage 2.3 2.7 V

VREF Memory I/O Reference Voltage VCC25 /2 - 0.05 VCC25 /2 + 0.05 V

VTT DDR Memory I/O Termination Voltage VREF - 0.04 VREF + 0.04 V

A9677-01

PCI
Device 1

Low
Skew
Clock
Buffer

PCI
Device 2

PCI
Device 3

Intel®
80321

I/O
Processor

a

X0

P_CLK0

Notes:
– PCI Clock lengths X0, X1, X2, X3 should be matched within 0.1inch of each other.
– Minimum separation between two different P_CLKs, "d" = 25 mils.
– Minimum separation between two segments of the same P_CLK line, "a" = 25 mils.

P
C

I B
us

P_CLK

P_CLK1

P_CLK2

P_CLK3

X3

X1

d

X2

Specification Update 51

Intel® 80321 I/O Processor
Documentation Changes

7. Section 7.6.1 page 75 has incorrect data
Problem: The first paragraph states:

“According to the PCI Local Bus Specification, Revision 2.2, PCI_RST# can be asserted when the
system power drops as low as 2.5 V. This voltage is too low for the 80321 to be able to execute the
power-fail sequence.”

Workaround: Change the first paragraph to the following:
“According to the PCI Local Bus Specification, Revision 2.2, P_RST# can be asserted when the
system power drops as low as 2.5 V. This voltage is too low for the 80321 to be able to execute the
power-fail sequence.”

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

8. Section 7.6.1 page 76 has incorrect data
Problem: The first paragraph states:

“...This PWRDELAY signal remains asserted a few milliseconds after the S_RST# to allow ample
time for the power-fail state machine to execute its sequence...”

Workaround: Change the first paragraph to the following:
“...This PWRDELAY signal remains asserted a few milliseconds after the P_RST# to allow ample
time for the power-fail state machine to execute its sequence...”

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

9. Section 7.6.1 page 77 has incorrect data
Problem: The first paragraph states:

“The latches are cleared when the 80321 drives SCKE[1:0] low with a self-refresh command and
are reset when S_RST# is driven from low to high after system power is recovered.”

Workaround: Change the first paragraph to the following:
“The latches are cleared when the 80321 drives SCKE[1:0] low with a self-refresh command and
are reset when P_RST# is driven from low to high after system power is recovered.”

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

10. Section 7.6.3 page 78 has missing data and incorrect data
Problem: The first paragraph states:

“...Power to DDR SDRAM is ensured with an automatic switch over to backup battery power when
the system power is lost. Refer to the Intel® 80321 I/O Processor Datasheet for more information
about this function.”

Workaround: Change the first paragraph to the following:
“...Power to DDR SDRAM is ensured with an automatic switch over to backup battery power when
the system power is lost. Battery backup should maintain power on DDR voltages to prevent data
loss. Refer to the Intel® 80321 I/O Processor Developer’s Manual, section 7.3, for more
information about this Power Failure mode.”

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

52 Specification Update

Intel® 80321 I/O Processor
Documentation Changes

11. Section 14.1 page 113 has missing data
Problem: The second paragraph states:

“The equivalent for other analyzers can be substituted. AFuturePlus Systems configuration file
with the FS1104 product that matches the pinout in Table 33.”

Workaround: Change the second paragraph to the following:
“The equivalent for other analyzers can be substituted. AFuturePlus Systems configuration file
with the FS1104 product that matches the pinout in Table 33. Refer to the PCI-X Addendum to the
PCI Compliance Checklist and the PCI Compliance Checklist,, Revision 2.1, available on the
www.pcisig.com website for details about the PCI/PCI-X protocol and electrical specification
compliance.”

Affected Docs: Intel® 80321 I/O Processor Design Guide.

Status: Updated in latest Design Guide Revision.

12. Channel Control Register; Channel Enable, page 248
Problem: Note required (see below):

Note: The Channel Enable bit is not autoclearing. When a descriptor is loaded by user software to the
NDAR and the Channel Enable bit is set from a prior execution, the Channel Enable bit must be
cleared to reset the state of the DMA and the AAU Controller. This does not apply when using
append to chain to existing descriptors.

Affected Docs: Intel® 80321 I/O Processor Developer’s Manual.

Status: Update to Developer’s Manual pending.

Specification Update 53

Intel® 80321 I/O Processor
Documentation Changes

54 Specification Update

Intel® 80321 I/O Processor
Documentation Changes

	Intel® 80321 I/O Processor
	Revision History
	Preface
	Summary Table of Changes
	Identification Information
	Core Errata
	1. Boundary Scan Is Not Fully Compliant to the IEEE 1149.1 Specification
	2. Drain Is Not Flushed Correctly when Stalled in the Pipeline
	3. Undefined Data Processing-‘like’ Instructions are Interpreted as an MSR Instruction
	4. Debug Unit Synchronization with the TXRXCTRL Register
	5. Extra Circuitry Is Not JTAG Boundary Scan Compliant
	6. Incorrect Decode of Unindexed Mode, Using Addressing Mode 5, Can Corrupt Protected Registers
	7. Load Immediately Following a DMM Flush Entry is Also Flushed
	8. Trace Buffer Does Not Operate Below 1.3�V
	9. Data Cache Unit Can Stall for a Single Cycle
	10. Aborted Store that Hits the Data Cache May Mark Writeback Data As Dirty
	11. CP15 Data Cache Unlock Command Can Cause Unlock in User Mode or when Flushed from the Pipe in...
	12. Store to Cacheable Memory, Interrupted by an Exception, May Inadvertently Write to Memory
	13. Data Cache Dirty Bits May be Corrupted when a Line Invalidate is Followed Immediately by a Store
	14. Data cache dirty bits may be Corrupted when a Bus Error on a Cache Line Fill is Followed Imme...
	15. Performance Monitor Unit Event 0x1 Can Be Incremented Erroneously by Unrelated Events
	16. In Special Debug State, Back-to-Back Memory Operations Where the First Instruction Aborts May...
	17. Instruction Memory Management Unit Address Translation is Turned Off for the First Fetch Afte...
	18. Data cache dirty bits may be corrupted when a store to cacheable memory occurs during a tag r...
	19. Accesses to the CP15 ID register with opcode2 > 0b001 returns unpredictable values
	20. Disabling and re-enabling the MMU can hang the core or cause it to execute the wrong code
	21. Updating the JTAG parallel register requires an extra TCK rising edge

	Non-Core Errata
	1. The SSP TXD Does Not Retain the Value of the Last Bit Transferred
	2. The ATU Returns Invalid Data for the DWORD that Target Aborted from the MCU when Using 32-Bit ...
	3. PBI Issue When Using 16-bit PBI Transactions in PCI Mode
	4. All-zero Result Buffer” for the AAU is not Implemented
	5. MCU Pointers are Incorrect following a Restoration from a Power Fail
	6. PMU Does Not Account for when the Arbiter Deasserts GNT# One Cycle before FRAME#
	7. SCKE[1:0] Contention During a Power Failure
	8. Core Write of ECC Error Not Setting Bit #23/#24 Correctly in ECAR
	9. Improper Power Fail Sequence During a Power Failure
	10. PLL Unable to Lock at Reset
	11. Lost Data During Bursts of Large Number of Partials with 32-bit ECC Memory
	12. P_RST# to PCI-X Initialization Pattern Hold Time (Tprh)
	13. The MTTR1 (Core Multi-Transaction Timer) is not operating due to improper behavior of the cor...
	14. The MCU supports a page size of 2 Kbytes for 64-bit mode
	15. A logic error in the Memory Controller Unit (MCU) incorrectly reports an ECC Error on memory ...
	16. Intel® 80321 I/O Processor/PCI-X Bridge Unexpected Split Completion Error
	17. Vih Minimum Input High Voltage (Vih) level for the PCI pins

	Specification Changes
	1. DDR VCC and DDR VREF minimum specifications need to be changed on the A-0 and B-0/B-1 steppings
	2. DDR SDRAM signal timing change, TVA3
	3. P_BMI (AE23) added to B-0/B-1 Steppings

	Specification Clarifications
	1. The Intel® 80321 I/O processor is compliant with the PCI Local Bus Specification, Revision�2.2...
	2. Modifications to the Hot-Debug procedure are necessary for the Intel® 80321 I/O processor when...
	3. Removed. Does not apply to the Intel® 80321 I/O processor.
	4. BAR0 Configuration When Using the Messaging Unit (MU)
	5. Reading Unpopulated SDRAM Memory Banks
	6. 32-bit Writes-to-Unaligned 64-bit Addresses, are Promoted to 64-bit Aligned Writes
	7. In-order Delivery not guaranteed for data blocks described by a single DMA descriptor

	Documentation Changes
	1. Table 4 Page 18 second row has incorrect data
	2. Table 9 (Sheet 3 of 5), page 31 and Table 10 (Sheet 5 of 5), page 38 have incorrect data
	3. Table 10 (Sheet 2 of 5), page 35 has incorrect data
	4. Section 6.2.2 on page 37 has incorrect data
	5. Figure 14 on page 40 has missing text
	6. Table 18, page 61 has missing data and incorrect data
	7. Section 7.6.1 page 75 has incorrect data
	8. Section 7.6.1 page 76 has incorrect data
	9. Section 7.6.1 page 77 has incorrect data
	10. Section 7.6.3 page 78 has missing data and incorrect data
	11. Section 14.1 page 113 has missing data
	12. Channel Control Register; Channel Enable, page 248

