CAN BUS Varistor #### GENERAL DESCRIPTION The CAN BUS varistor is a zinc oxide (ZnO) based ceramic semiconductor device with nonlinear voltage-current characteristics (bi-directional) similar to back-to-back Zener diodes and an EMC capacitor in parallel (see equivalent circuit model). They have the added advantage of greater current and energy handling capabilities as well as EMI/RFI attenuation. Devices are fabricated by a ceramic sintering process that yields a structure of conductive ZnO grains surrounded by electrically insulating barriers, creating varistor like behavior. ## **HOW TO ORDER** Array **Array** #### PERFORMANCE CHARACTERISTICS | AVX Part No. | V _w (DC) | V _w (AC) | V _B | IL | E _T | I _P | Сар. | Case Size | Elements | |--------------|---------------------|---------------------|-----------------------|-----|----------------|----------------|-----------|-----------|----------| | CAN0001 | ≤18 | ≤14 | 120 | 2 | 0.015 | 4 | 22 | 0603 | 1 | | CAN0002 | ≤18 | ≤14 | 70 | 2 | 0.015 | 4 | 22 | 0405 | 2 | | CAN0004 | ≤18 | ≤14 | 100 | 2 | 0.015 | 4 | 22 | 0612 | 4 | | CAN0005 | ≤18 | ≤14 | 21.6 | 5µa | 0.020 | 1 | 15pF ±30% | 0402 | 1 | I, L Termination Finish Code - Packaging Code V_W(DC) DC Working Voltage (V) V_w(AC) AC Working Voltage (V) Typical Breakdown Voltage (V @ 1mApc) V_B V_{c} Clamping Voltage (V @ I_{vc}) Test Current for V_c (A, 8x20µS) Maximum Leakage Current at the Working Voltage (µA) $E_{\scriptscriptstyle T}$ Transient Energy Rating (J, 10x1000µS) I_{P} Peak Current Rating (A, 8x20µS) Cap Maximum Capacitance (pF) @ 1 MHz and 0.5Vrms Temp Range -55°C to +125°C #### **EQUIVALENT CIRCUIT MODEL** #### **Discrete MLV Model** Voltage Variable resistance (per VI curve) Where: R_v > $10^{12} \, \Omega$ R_p С defined by voltage rating and energy level R_{on} turn on resistance parallel body inductance # **CAN BUS Varistor** ## **PHYSICAL DIMENSIONS** #### mm (inches) | | 0402 Discrete | 0603 Discrete | 0405 Array | 0612 Array | |---|---------------------------|---------------------------|---------------------------|---------------------------| | Length | 1.00 ±0.10 (0.040 ±0.004) | 1.60 ±0.15 (0.063 ±0.006) | 1.00 ±0.15 (0.039 ±0.006) | 1.60 ±0.20 (0.063 ±0.008) | | Width | 0.50 ±0.10 (0.020 ±0.004) | 0.80 ±0.15 (0.032 ±0.006) | 1.37 ±0.15 (0.054 ±0.006) | 3.20 ±0.20 (0.126 ±0.008) | | Thickness | 0.60 Max. (0.024 Max.) | 0.90 Max. (0.035 Max.) | 0.66 Max. (0.026 Max.) | 1.22 Max. (0.048 Max.) | | Term Band Width 0.25 ±0.15 (0.010 ±0.006) | | 0.35 ±0.15 (0.014 ±0.006) | 0.36 ±0.10 (0.014 ±0.004) | 0.41 ±0.10 (0.016 ±0.010) | ## **SOLDER PAD DIMENSIONS** #### mm (inches) | l05 Array | |-----------| | l05 Array | | Α | В | C | D | Е | |-----------------|-----------------|-----------------|-----------------|-----------------| | 0.46
(0.018) | 0.74
(0.029) | 1.20
(0.047) | 0.38
(0.015) | 0.64
(0.025) | #### 0612 Array | | - | | | | |-----------------|-----------------|-----------------|-----------------|-----------------| | Α | В | С | D | Е | | 0.89
(0.035) | 1.65
(0.065) | 2.54
(0.100) | 0.46
(0.018) | 0.76
(0.030) | ## **APPLICATION** AVX CAN BUS varistors offer significant advantages in general areas of a typical CAN network as shown on the right. Some of the advantages over diodes include: - space savings - higher ESD capability @ 25kV contact - higher in rush current (4A) 8 x 20µS - FIT rate ≤0.1 failures (per billion hours)